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PREFACE 

This manual provides information about the Amiga[tm] graphics and audio hardware 
and about how the Amiga talks to the outside world through peripheral devices. A por
tion of this manual is a tutorial on writing assembly language programs to directly con
trol the Amiga's graphics and hardware. 

This book is intended for the following audiences: 

o Assembly language programmers who need a more direct way of interacting with 
the system than the routines described in the Amiga ROM Kernel Manual. You 
can find information here to help you make your programs run faster or do 
things that the ROM kernel routines don't do. 

o Anyone who wants to add new peripherals to the Amiga or just wants to know 
how the hardware works. 

We suggest that you use this book according to your level of familiarity with the Amiga 
system. Here are some suggestions: 

o If this is your initial exposure to the Amiga, read chapter 1, which gives a sur
vey of all the hardware features and a brief rundown of graphics and audio 
effects created by hardware interaction. 

o If you are already familiar with the system and want to acquaint yourself with 
how the various bits in the hardware registers govern the way the system func
tions, browse through chapters 2 through 8. Examples are included in these 
chapters. 

o For advanced users, the appendixes give a concise summary of the entire register 
set and the uses of the individual bits. Once you are familiar with the effects of 
changes in the various bits, you may wish to refer more often to the appendixes 
than to the explanatory chapters. 

Here is a brief overview of the contents: 

Chapter 1, Introduction. An overview of the hardware and survey of the 
Amiga's graphics and audio features. 

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the 
entire graphics and audio system; directing mid-screen modifications in graphics 
displays and directing register changes during the time between displays. 
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Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, 
one of the basic display elements of the Amiga; how the Amiga produces multi
color, multi-graphical bit-mapped displays. 

Chapter 4, Sprite Hardware. Using the eight sprite direct-memory access (DMA) 
channels to make sprite movable objects; creating their data structures, display
ing and moving them, reusing the DMA channels. 

Chapter 5, Audz'o Hardware. Overview of sampled sound; how to produce qual
ity sound, simple and complex sounds, and modulated sounds. 

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create anima
tion effects and draw lines into play fields. 

Chapter 7, System Oontrol Hardware. Using the control registers to define 
depth arrangement of graphics objects, detect collisions between graphics 
objects, control direct memory access, and control interrupts. 

Chapter 8, Interface Hardware. How the Amiga talks to the outside world 
through controller ports, keyboard, audio jacks and video connectors, serial and 
parallel interfaces; information about the disk controller and RAM expansion 
slot. 

Appendixes. Alphabetical and address-order listings of all the graphics and 
audio system registers and the functions of their bits, system memory map, 
descriptions of internal and external connectors, specifications for the peripheral 
interface ports, and specifications for the keyboard. 

Glossary. After the appendixes, there is a glossary of important terms. 

You may wish to look at the following books and manuals for further information about 
the Amiga: 

o The Amiga ROM Kernel Manual contains information about the Exec multitask
ing routines and is the source for all the C language primitives for Amiga graph
ics, animation, and audio. 

o The following manuals contain information about the AmigaDOS operating sys
tem: 

o AmigaDOS User's Manual 
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o AmigaDOS Developer's Manual 

o AmigaDOS Technical Reference Manual 

It is our policy to make certain that the information contained here is accurate, con
sistent, and up to date. If you should find any material confusing, inaccurate, or incom
plete, please feel free to contact Amiga with your questions or comments. 
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Chapter 1 

INTRODUCTION 

The Amiga is a low-cost, high-performance computer with advanced graphics and sound 
features. This chapter describes the Amiga's hardware components and gives a brief 
overview of its graphics and sound features. 

Components of the Amiga 

These are the hardware components of the Amiga: 

Introduction 1 



o Motorola Me 68000 16/32-bit main processor. 

o 256K bytes of internal RAM, expandable to 512K. 

o 256K bytes of ROM containing a real-time, multi-tasking operating system with 
sound, graphics, and animation support routines. 

o Built-in 3 1/2-inch double-sided disk drive. 

o Expansion disk port for connecting up to three additional disk drives, which may be 
either 3-1/2 inch or 5-1/4 inch, double-sided. 

o Fully programmable serial port. 

o Fully programmable parallel port. 

o Two-button opto-mechanical mouse. 

o Two reconfigurable controller ports (for mice, joysticks, paddles, or custom 
con trollers). 

o Detach~d 89-key keyboard with calculator pad, function keys, and cursor keys. 

o Ports for simultaneous composite video and analog or digital RGB output. 

o Ports for audio output to left and right stereo channels from four special-purpose 
audio channels. 

o Expansion connector that allows you to add RAM, additional disk drives (floppy or 
hard), peripherals, or coprocessors. 

THE MC 68000 AND THE AMIGA SPECIAL-PURPOSE HARDWARE 

The Motorola 68000 is a 16/32-bit microprocessor operating at 7.16 megahertz. In the 
Amiga, the 68000 can address over 8 megabytes of contiguous random access memory 
(RAM). 

The performance of the 68000 is enhanced by a system design that gives it every alter
nate bus cycle, allowing it to run at full rated speed most of the time. As described in 
the section below, the special-purpose hardware can steal time from the 68000 for jobs it 
can do more efficiently than the 68000. Even then, such cycle stealing only blocks the 
68000's access to the shared memory. When using ROM or external memory, the 68000 
always runs at full speed. 
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Among other functions, the special-purpose hardware provides the following: 

o Bit-plane-generated high-resolution graphics typically producing 320 by 200 non
interlaced displays and 320 by 400 interlaced displays in 32 colors, and 640 by 200 
non-interlaced or 640 by 400 interlaced displays in 16 colors. There is also a special 
mode that allows you to have up to 4,096 colors on-screen simultaneously. 

o A custom display coprocessor that allows changes to most of the special-purpose 
registers in synchronization with the position of the video beam. This allows such 
special effects as mid-screen changes to the color palette, splitting the screen into 
multiple horizontal slices, each having different video resolutions and color depths, 
beam-synchronized interrupt generation for the 68000, and more. The coprocessor 
can trigger many times per screen. It can trigger in the middle of lines, as well as at 
the beginning or during the blanking interval. The coprocessor itself can directly 
affect most of the registers of the special-purpose hardware, freeing the 68000 for 
general-purpose computing tasks. 

o 32 system color registers, each of which contains a twelve-bit number as four bits of 
RED, four bits of GREEN, and four bits of BLUE intensity information. This 
allows a system color palette of 4,096 different choices of color for each register. 
Although an RGB monitor provides the best available output for the system graph
ics, text, and color, the composite video signal has been carefully designed to provide 
maximum NTSC compatibility. This signal may be video-taped or fed to a standard 
composite video monitor. 

o Eight reusable 16-bit-wide sprites with up to 15 color choices per sprite pixel (when 
sprites are paired). A sprite is an easily movable graphics object whose display is 
entirely independent of the background {called a playfield)j sprites can be displayed 
"over" or "under" this background. A sprite is 16 low-resolution pixels wide and an 
arbitrary number of lines tall. After producing the last line of a sprite on the screen, 
a sprite DMA (direct memory access) channel may be used to produce yet another 
sprite image elsewhere on-screen (with at least one horizontal line between each 
reuse of a sprite processor). Thus, you can produce many small sprites by simply 
reusing the sprite processors appropriately. 

o Dynamically-controllable inter-object priority, with collision detection. This means 
that the system can dynamically control the video priority between the sprite 
objects and the bit-plane backgrounds (playfields). You can control which object or 
objects appear "on top" at any time. 

Additionally, you can use system hardware to detect collisions between objects and 
have your program react to such collisions. 
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o Custom bit-blitter used for high speed data movement, adaptable to bit-plane ani
mation. The blitter has been designed to efficiently retrieve data from up to three 
sources, combine the data in one of 256 different possible ways, and optionally store 
the combined data in a destination area. This is one of the situations where the 
68000 gives up memory cycles to a DMA channel that can do the job more 
efficiently. The bit-blitter, in a special mode, draws patterned lines into rectangu
larly organized memory regions at a speed of about 1 million dots per second; and it 
can efficiently handle area fill. 

o Audio consisting of four low-noise digital channels with independently programmable 
volume and sampling rate. The audio channels retrieve their control and data via 
direct memory access. Once started, each channel can automatically playa specified 
waveform without further processor interaction. Two channels are directed into 
each of the two stereo audio outputs. The audio channels may be linked together if 
desired to provide amplitude or frequency modulation or both forms of modulation 
simultaneously. 

o DMA-controlled floppy disk read and write on a full-track basis. This means that 
the built-in disk can read something over 5.6K bytes of data in a single disk revolu
tion (11 sectors of 512 bytes each). 

All of the special functions described above are produced by three custom-designed VLSI 
circuits, which work in concert with the 68000. These circuits and the 68000 use the 
shared memory on a fully interleaved basis. Since the 68000 only needs to access the 
memory bus during each alternate clock cycle in order to run full-speed, the rest of the 
time the memory bus is free for other activities. 

The special-purpose hardware uses the memory bus during these free cycles, effectively 
allowing the 68000 to run at full rated speed most of the time. We say "most of the 
time" because there are some occasions when the special-purpose hardware steals 
memory cycles from the 68000, but with good reason. Specifically, the coprocessor and 
the data-moving DMA channel called the blitter can each steal time from the 68000 for 
jobs they can do better than the 68000. Thus, the system DMA channels are designed 
with maximum performance in mind; the job to be done is performed by the most 
efficient hardware element available. In addition, sprites, audio, and disk DMA also 
steal cycles when in operation. 

Another primary feature of the Amiga hardware is the ability to dynamically control 
which part of memory is used for the background display, audio, and sprites. The 
Amiga is not limited to a small, specific area of RAM for a frame buffer. Instead, the 
system allows display bit-planes, sprite-processor control lists, coprocessor instruction 
lists, or audio channel control lists to be located anywhere within the lowest 512K of the 
memory map. 
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This same region of memory can be accessed by the bit-blitter. This means, for exam
ple, that the user can store partial images at scattered areas of memory and use these 
images for animation effects by rapidly replacing on-screen material while saving and res
toring background images. In fact, the Amiga includes firmware support for display 
definition and control as well as support for animated objects embedded within 
playfields. 

VCR AND DffiECT CAMERA INTERFACE 

In addition to the connections for NTSC composite Amiga video and both digital and 
analog RGB monitors, the system can be expanded to include a VCR or camera inter
face. This system is capable of synchronizing with an external video source and replac
ing the system background color with the external image. This allows for the develop
ment of fully integrated video images with computer-generated graphics. Laser disk 
input is accepted in the same manner. 

PRIMARY AND SECONDARY MEMORY 

Primary memory in the Amiga consists of 256K bytes of ROM and 256K bytes of RAM. 
A RAM expansion cartridge is available as an option. Secondary memory is provided by 
a built-in 3 1/2-inch floppy disk drive. Disks are SO-track, double-sided, and formatted 
as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per disk). A special util
ity can read and write disk files compatible with the Apple II[tm]. In addition, the disk 
controller can read and write 320/360K IBM PC[tm] formatted disks. External 3 1/2-
inch or 5 1/4-inch disk drives can be added to the system through the expansion 
connector. 

PERIPHERALS 

Circuitry for some of the peripherals resides on one of the custom chips; other chips han
dle various signals not specifically assigned to any of the custom chips, including modem 
controls, disk status sensing, disk motor and stepping controls, ROM enable, parallel 
input/output interface, and keyboard interface. 

The Amiga includes a standard RS-232-C serial port for external serial input/output 
devices. 

A detached, professional-quality keyboard is included in the base system. You can store 
the keyboard beneath the system cabinet. For maximum flexibility, both key-down and 
key-up signals are sent. 
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For those who prefer incremental cursor control, there are cursor keys on the keyboard. 
You can attach many other types of controllers through the two controller ports on the 
side of the base unit. You can use a mouse, joystick, keypad, trackball, or steering 
wheel controller in either of the controller ports. (A light pen can be attached to port 0.) ..., 

I 

System Expandability and Adaptability 

You can add peripheral devices to the Amiga's expansion connector, add additional 
external RAM on the same expansion connector, or upgrade internal RAM to 512K. 
Additional disk units may be daisy-chained from a connector at the rear of the unit for a 
total of three extra drives. 

The system software is highly adaptable to other host operating systems. The Amiga's 
graphics support routines are designed to make the user interface as friendly as possible. 
New peripheral devices are recognized and used by system software through a well
defined, well-documented linking procedure. 
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Chapter 2 

COPROCESSOR HARDWARE 

Introduction 

The Copper is a general purpose coprocessor that resides in one of the Amiga's custom 
chips. It retrieves its instructions via direct memory access (DMA). The Copper can 
control nearly the entire graphics system, freeing the 68000 to execute program logic; it 
can also directly affect the contents of most of the chip control registers. It is a very 
powerful tool for directing mid-screen modifications in graphics displays and for directing 
the register changes that must occur during the vertical blanking periods. Among other 
things, it can control register updates, reposition sprites, change the color palette, 
update the audio channels, and control the blitter. 
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One of the features of the Copper is its ability to WAIT for a specific video beam posi
tion, then MOVE data into a system register. During the WAIT period, the Copper 
examines the contents of the video beam position counter directly. This means that 
while the Copper is waiting for the beam to reach a specific position, it does not use the 
memory bus at all. Therefore, the bus is free~ for use by the other DMA channels or by 
the 68000. 

When the WAIT condition has been satisfied, the Copper steals memory cycles from 
either the blitter or the 68000 to move the specified data into the selected special
purpose register. 

The Copper is a two-cycle processor that requests the bus only during odd-numbered 
memory cycles. This prevents collision with audio, disk, refresh, sprites, and most low
resolution display DMA access, all of which use only the even-numbered memory cycles. 
The Copper, therefore, needs priority over only the 68000 and the blitter (the DMA 
channel that handles animation, line drawing, and polygon filling). 

As with all the other DMA channels in the Amiga system, the Copper can retrieve its 
instructions only from the lowest 512K bytes of system memory. 

ABOUT THIS CHAPTER 

In this chapter, you will learn how to use the special Copper instruction set to organize 
mid-screen register value modifications and pointer register set-up during the vertical 
blanking interval. The chapter shows how to organize Copper instructions into Copper 
lists, how to use Copper lists in interlaced mode, and how to use the Copper with the 
blitter. The Copper is discussed in this chapter in a general fashion. The chapters that 
deal with playfields, sprites, audio, and the blitter contain more specific suggestions for 
using the Copper. 

What is a Copper Instruction? 

As a coprocessor, the Copper adds its own instruction set to the instructions already 
provided by the 68000. The Copper has only three instructions, but you. can do a lot 
with them: 
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o WAIT for a specific screen position specified as x and y coordinates. 

o MOVE an immediate data value into one of the special-purpose registers .. 

o SKIP the next instruction if the video beam has already reached a specified 
screen position. 

All Copper instructions consist of two 16-bit words in sequential memory locations. 
Each time the Copper fetches an instruction, it fetches both words. The MOVE and 
SKIP instructions require two memory cycles and two instruction words. Because only 
the odd memory cycles are requested by the Copper, four memory cycle times are 
required per instruction. The WAIT instruction requires three memory cycles and six 
memory cycle times; it takes one extra memory cycle to wake up. 

Although the Copper can directly affect only machine registers, it can affect the memory 
by setting up a blitter operation. More information about how to use the Copper in 
controlling the blitter can be found in the sections called "Control Register" and "Usin.g 
the Copper with the Blitter." 

The WAIT and MOVE instructions are described below. The SKIP instruction is 
described in the "Advanced Topics" section. 

The MOVE Instruction 

The MOVE instruction transfers data from RAM to a register destination. The 
transferred data is contained in the second word of the MOVE instruction; the first word 
contains the address of the destination register. This procedure is shown in detail in the 
section called "Summary of Copper Instructions." 

FIRST INSTRUCTION WORD (IRl) 

Bit 0 Always set to O. 

Bits 8 - 1 Register destination address (DA8-1). 

Bits 15 - 9 Not used, but should be set to O. 

SECOND INSTRUCTION WORD (IR2) 

Bits 15 - 0 16 bits of data to be transferred (moved) 
to the register destination. 
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The Copper can store data into the following registers: 

o Any register whose address is $20 or above.1 

o Any register whose address is between $10 and $20 if the Copper danger bit is a 
1. The Copper danger bit is in the Copper's control register, COPCON, which 
is described in the "Control Register" section. 

o The Copper cannot write into any register whose address is lower than $10. 

Appendix B contains all the machine register addresses. 

The following example MOVE instructions point bit-plane pointer 1 at $21000 and bit
plane pointer 2 at $25000.2 

DC.W 
DC.W 
DC.W 
DC.W 

.. $00EO,$0002 
$00E2,$1000 
$00E4,$0002 
$00E6,$5000 

jMove $0002 to address $OEO (BPL1PTH) 
jMove $1000 to address $OE2 (BPL1PTL) 
jMove $0002 to address $OE4 (BPL2PTH) 
jMove $5000 to address $OE6 (BPL2PTL) 

1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix. 
2 All sample code segments are in assembler language. 
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The WAIT Instruction 

The WAIT instruction causes the Copper to wait until the video beam counters are 
equal to (or greater than) the coordinates specified in the instruction. While waiting, the 
Copper is off the bus and not using memory cycles. 

The first instruction word contains the vertical and horizontal coordinates of the beam 
position. The second word contains enable bits that are used to form a "mask" that 
tells the system which bits of the beam position to use in making the comparison. 

FIRST INSTRUCTION WORD (IRl) 

Bit 0 Always set to 1. 

Bits 15 - 8 Vertical beam position (called VP). 

Bits 7 - 1 Horizontal beam position (called HP). 

SECOND INSTRUCTION WORD (IR2) 

Bit 0 Always set to O. 

Bit 15 The blitter-finished-disable bit. 
Normally, this bit is a 1. 
(See the "Advanced Topics" section below.) 

Bits 14 - 8 Vertical position compare enable bits (called VE). 

Bits 7 - 1 Horizontal position compare enable bits (called HE). 

The following example WAIT instruction waits for scan line 150 ($96) with the horizon
tal position masked off. 

DC.W $9601,$FFOO i Wait for line 150, 
i ignore horizontal counters 

The following example WAIT instruction waits for scan line 255 and horizontal position 
254. This event will never occur, so the Copper stops until the next vertical blanking 
interval begins. 

DC.W $FFFF ,$FFFE i Wait for line 255, 
i H = 254 (ends Copper list) 
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The following notes apply to both the WAIT instruction and to the SKIP instruction, 
which is described below in the "Advanced Topics" section. 

HORIZONTAL BEAM POSITION 

TJl •. ~'~tat:~,,~'''_''~~~'M:~;$~ The least significant bit is Ilot 
used'in the ~~~p;ri;~n','s~ th~re ~re ..... 'iPo~iti~'~s av~ilablef~~Copperoperations. fTiiiS;,; 
'i8A".,t;:ti7:~~~~,~jr{it~:lti~i~;f~(t8,,'.J$. it .:liig1f:~r'OOalutii~~ Horizon tal 
blanking falls in the range of$'OF to $35. The st~n(fard screen (320 pixels wide) has an 
unused horizontal portion of $04 to $47 (during which only the background color is 
displayed). 

VERTICAL BEAM POSITION 

The vertical beam position can be resolved to one line, with a maximum value of 255. 
There are actually 262 possible vertical positions. Some minor complications can occur if 
you want something to happen within these last six or seven scan lines. Because there 
are only eight bits of resolution for vertical beam position (allowing 256 different posi
tions), one of the simplest ways to handle this is shown below. 

Instruction 

[ ... other instructions ... ] 

WAIT for position (0,255) 

WAIT for any horizontal position 
with vertical position 0 through 6, 
covering the last 6 lines of the scan 
before vertical blanking occurs. 
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Explanation 

At this point, the vertical 
counter appears to wrap to 0 
because the comparison 
works on the least significant 
bits of the vertical count. 

Thus the total of 256 + 6 = 
262 lines of video beam travel 
during which Copper instruc
tions can be executed. 



THE COMPARISON ENABLE BITS 

Bits 14-1 are normally set to all Is. The use of the comparison enable bits is described 
later in the "Advanced Topics" section. 

Using the Copper Registers 

There are several machine registers and strobe addresses dedicated to the Copper: 

o Location registers 

o Jump address strobes 

o Con trol register 

LOCATION REGISTERS 

The Copper has two sets of location registers: 

COP1LCH High 3 bits of first Copper list address. 

COP1LCL Low 16 bits of first Copper list address. 

COP2LCH High 3 bits of second Copper list address. 

COP2LCL Low 16 bits of second Copper list address. 

In accessing the hardware directly, you often have to write to a pair of registers that 
contains the address of some data. The register with the lower address always has a 
name ending in "H" and contains the most significant data, or high 3 bits of the 
address. The register with the higher address has a name ending in "L" and contains 
the least significant data, or low 15 bits of the address. Therefore, you write the 18-bit 
address by moving one long word to the register whose name ends in "H." This is 
because when you write long words with the 68000, the most significant word goes in the 
lower addressed word. 

In the case of the Copper location registers, you write the address to COP1LCH. In the 
following text, for simplicity, these addresses are referred to as COPILC or COP2LC. 
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The Copper location registers contain the two indirect jump addresses used by the 
Copper. The Copper fetches its instructions by using its program counter and incre
ments the program counter after each fetch. When a jump address strobe is written, the 
corresponding location register is loaded into the Copper program counter. This causes 
the Copper to jump to a new location, from which its next instruction will be fetched. 
Instruction fetch continues sequentially until the Copper is interrupted by another jump 
address strobe. 

NOTE 

At the start of each vertical blanking interval, COPILC is automatically used 
to start the program counter. That is, no matter what the Copper is doing, 
when the end of vertical blanking occurs, the Copper is automatically forced 
to restart its operations at the address contained in COPILC. 

JUMP STROBE ADDRESS 

When you write to a Copper strobe address, the Copper reloads its program counter 
from the corresponding location register. The Copper can write its own location regis
ters and strobe addresses to perform programmed jumps. For instance, you might 
MOVE an indirect address into the COP2LC location register. Then, any MOVE 
instruction that addresses COPJMP2 strobes this indirect address into the program 
counter. 

There are two jump strobe addresses: 

COP JMPI Restart Copper from address contained in COPILC. 

COPJMP2 Restart Copper from address contained in COP2LC. 

CONTROL REGISTER 

The Copper can access some special-purpose registers all of the time, some registers only 
when a special control bit is set to a 1, some registers not at all. The registers that the 
Copper can always affect are numbered $20 through $FF inclusive. Those it cannot 
affect at all are numbered $00 to $OF inclusive. (See appendix B for a list of registers in. 
address order.) The Copper control register is within the third, always protected, group. 
Thus it takes deliberate action on the part of the 68000 to allow the Copper to write 
into a specific range of the special-purpose registers. 

14 Coprocessor Hardware 



The Copper control register, called COPCON, contains only one bit, bit #1. This bit, 
called CDANG (for Copper Danger Bit) protects all registers numbered between $10 and 
$IF inclusive. This range includes the blitter control registers. When CDANG is 0, 
these registers cannot .be written by the Copper. \Vhen CDANG is 1, these registers can 
be written by the Copper. Preventing the Copper from accessing the blitter control 
registers prevents a "runaway" Copper (caused by a poorly formed instruction list) from 
accidentally affecting system memory. 

NOTE 

The CDANG bit is cleared after a reset. 

Putting Together a Copper Instruction List 

The Copper instruction list contains all the register resetting done during the vertical 
blanking interval and the register modifications necessary for making mid-screen altera
tions. As you are planning what will happen during each display field, you may find it 
easier to think of each aspect of the display as a separate subsystem, such as playfields, 
sprites, audio, interrupts, and so on. Then you can build a separate list of things that 
must be done for each subsystem individually at each video beam position. 

When you have created all these intermediate lists of things to be done, you must merge 
them together into a single instruction list to be executed by the Copper once for each 
display frame. The alternative is to create this all-inclusive list directly, without the 
intermediate steps. 

For example, the bit-plane pointers used in playfield displays and the sprite pointers 
must be rewritten during the vertical blanking interval so the data will be properly 
retrieved when the screen display starts again. This can be done with a Copper instruc
tion list that does the following: 

WAIT until first line of the display 
MOVE data to bit-plane pointer 1 
MOVE data to bit-plane pointer 2 
MOVE data to sprite pointer 1 
and so on 

As another example, the sprite DMA channels that create movable objects can be reused 
multiple times during the same display field. You can change the size and shape of the 
reuses of a sprite; however, every multiple reuse normally uses the same set of colors 
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during a full display frame. You can change sprite colors mid-screen with a Copper 
instruction list that waits until the last line of the first use of the sprite processor and 
changes the colors before the first line of the next use of the same sprite processor: 

WAIT for first line of display 
MOVE first color 1 to COLOR17 
MOVE firstcolor2 to COLOR18 
MOVE firstcolor3 to COLOR19 
WAIT for last line +1 of sprite's first use 
MOVE secondcolor1 to COLOR17 
MOVE secondcolor2 to COLOR18 
MOVE secondcolor3 to COLOR19 
and so on 

As you create Copper instruction lists, note that the final list must be in th~ same order 
as that in which the video beam creates the display. The video beam traverses the 
screen from position (0,0) in the upper left hand corner of the screen to the end of the 
display (226,263) in the lower right hand corner. The first ° in (0,0) represents the x 
position. The second ° represents the y position. For example, an instruction that does 
something at position (0,100) should come after an instruction that affects the display at 
position (0,60). 

Note that because of the form of the WAIT instruction, you can sometimes get away 
with not sorting the list in strict video beam order. The WAIT instruction causes the 
Copper to wait until the value in the beam counter is equal to or greater than the value 
in the instruction. This means, for example, if you have instructions following each 
other like this: 

WAIT for position (64,64) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

the Copper will perform both moves, even though the instructions are out of sequence. 
The "greater than" specification prevents the Copper from locking up if the beam has 
already passed the specified position. A side effect is that the second MOVE below will 
be performed: 
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WAIT for position (60,60) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

> At the time of the second WAIT in this sequence, the beam counters will be greater than 
the position shown in the instructions. Therefore, the second MOVE will also be per
formed. 

Note also that the above sequence of instructions could just as easily be 

WAIT for position (60,60) 
MOVE data 
MOVE data 
MOVE data 

because multiple moves can follow a single WAIT. 

COMPLETE SAMPLE COPPER LIST 

The following example shows a complete Copper list. This list is for two bit-planes
one at $21000 and one at $25000. At the top of the screen, the color registers are loaded 
with the following values: 

Register Color 

COLOROO white 
COLOR01 red 
COLOR02 green 
COLOR03 blue 

At line 150 on the screen, the color registers are reloaded: 
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Register Color 

COLOROO black 
COLOROI yellow 
COLOR02 cyan 
COLOR03 magenta 

The complete Copper list follows. 

COPPERLIST: 
DC.W$00EO,$0002 
DC.W $00E2,$1000 
DC.W $00E4,$0002 
DC.W $00E6,$5000 

, 
j Load color registers 

, 

DC.W 
DC.W 
DC.W 
DC.W 

$0180,$OFFF 
$0182,$OFOO 
$0184,$00FO 
$0186,$000F 

j Wait for line 150 

DC.W $g601,$FFOO 

j Reload color registers 

, 

DC.W 
DC.W 
DC.W 
DC.W 

$0180,$0000 
$0182,$OFFO 
$0184,$00FF 
$0186,$OFOF 

;Move $0002 into address $OEO (BPL1PTH) 
jMove $1000 into address $OE2 (BPL1PTL) 
;Move $0002 into address $OE4 (BPL2PTH) 
jMove $5000 into address $OE6 (BPL2PTL) 

jMove white into address $180 (COLOROO) 
jMove red into address $182 (COLOR01) 
jMove green into address $184 (COLOR02) 
jMove blue into address $186 (COLOR03) 

j Wait for line 150, ignore horiz. position 

jMove black into address $0180 (COLOROO) 
;Move yellow into address $0182 (COLOR01) 
jMove cyan into address $0184 (COLOR02) 
;Move magenta into address $0186 (COLOR03) 

j End Copper list by waiting for the impossible 

DC.W $FFFF,$FFFE ; Wait for line 255, H = 254 (never happens) 

For more information about color registers, see chapter 3, "Playfield Hardware." 
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LOOPS AND BRANCHES 

Loops and branches in Copper lists are covered in the "Advanced Topics" section below. 

Starting and Stopping the Copper 

STARTING THE COPPER AFTER RESET 

At power-on or reset time, you must initialize one of the Copper location registers 
(COP1LC or COP2LC) and write to its strobe address before Copper DMA is turned on. 
This ensures a known start address and known state. Usually, COP1LC is used because 
this particular register is reused during each vertical blanking time. The following 
sequence of instructions shows how to initialize a location register. It is assumed that 
the user has already created the correct Copper instruction list at location "mycoplist." 

MOVE.L 
MOVE.L 
MOVE.W 

MOVE.W 
MOVE.W 

MYCOPLIST, aO 
AO, COP1LCH 
COPJMP1, DO 

; Write both COP1LCH and COP1LCL 
;Any access to this location 
; forces load from COP1LC to 
; Copper program counter 

#SETBIT + COPPERDMA, DO 
DO, DMACONW ;Enable Copper DMA 

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs 
the Copper will restart at the same location for each subsequent video screen. This 
forms a repeatable loop which, if the list is correctly formulated, will cause the displayed 
screen to be stable. 

STOPPING THE COPPER 

No stop instruction is provided for the Copper. To ensure that it will stop and do noth
ing until the screen display ends and the program counter starts again at the top of the 
instruction list, the last instruction should be to WAIT for an event that cannot occur. 
A typical instruction is to WAIT for VP = $FF and HP = $FE. An HP of greater than 
$E2 is not possible. When the screen display ends and vertical blanking starts, the 
Copper will automatically be pointed to the top of its instruction list, and this final 
WAIT instruction never finishes. 
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You can also stop the Copper by disabling its ability to use DMA for retrieving instruc
tions or placing data. The register called DMACON controls all of the DMA channels. 
Bit 7, COPEN, enables Copper DMA when set to 1. 

For information about controlling the DMA, see chapter 7, "System Control Hardware." 

Advanced Topics 

THE SKIP INSTRUCTION 

The SKIP instruction causes the Copper to skip the next instruction if the video beam 
counters are equal to or greater than the value given in the instruction. 

The contents of the SKIP instruction's words are shown below. They are identical to 
the WAIT instruction, except that bit 0 of the second instruction word is a 1 to identify 
this as a SKIP instruction. 

FIRST INSTRUCTION WORD (IRl) 

Bit 0 Always set to 1. 

Bits 15 - 8 Vertical position (called VP). 

Bits 7 - 1 Horizontal position (called HP). 

Skip if the beam counter is equal to or 
greater than these combined bits 
(bits 15 through 1). 

SECOND INSTRUCTION WORD (IR2) 

Bit 0 Always set to 1. 

Bit 15 The blitter-finished-disable bit. 
(See "Using the Copper with the 
Blitter" below.) 

Bits 14 - 8 Vertical position compare enable bits (called VE). 

Bits 7 - 1 Horizontal position compare enable bits (called HE). 
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The notes about horizontal and vertical beam position found in the discussion of the 
WAIT instruction apply also to the SKIP instruction. 

The following example SKIP instruction skips the instruction following it if VP (vertical 
beam position) is greater than or equal to 100 ($64). 

DC.W $6401,$FFOI ;If VP >= 100, skip next instruction (ignore HPJ 

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE 

You can change the value in the location registers at any time and use this value to con
struct loops in the instruction list. Before the next vertical blanking time, however, the 
COPILC registers must be repointed to the beginning of the appropriate Copper list. 
The value in the COPILC location registers will be restored to the Copper's program 
counter at the start of the vertical blanking period. 

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of 
the horizontal and vertical position are to be used for the beam counter comparison. 
The position in instruction word 1 and the compare enable bits in instruction word 2 are 
tested against the actual beam counters before any further action is taken. A position 
bit in instruction word 1 is used in comparing the positions with the actual beam 
counters if and only if the corresponding enable bit in instruction word 2 is set to 1. If 
the corresponding enable bit is 0, the comparison is always true. For instance, if you 
care only about the value in the last four bits of the vertical position, you set only the 
last four compare enable bits, bits (11-8) in instruction word 2. 

As another example, suppose you want to issue an interrupt each time a total of 16 
vertical scan lines has occurred. In addition, you want the interrupts only between lines 
80 and 160. The Copper instruction sequence below would do this. The enable "masks" 
are specified with the instructions. 

Before the Copper is told to begin this set of instructions, you would use the 68000 to 
write the address of LOOP to COP2LC. 
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; Oopper list to interrupt the 68000 once every 16 scan lines, 
; in the range VP = 80 through VP = 160. 

. , 

DC.W 
DC.W 

$5001,$FFFE 
$OF01,$OFOO 

j Wait for VP = $50, HP = 0 
; Wait for VP = xxxx1111 

; The following instruction writes to address $090, the 
; interrupt request register. Writing $8010 sets the Oopper 
j interrupt bit in the register, which will interrupt the 68000. 

. , 
DC.W 
DC.W 

$009C,$801O 
$A001,$FF01 

;Move $8010 to $090 (interrupt 68000) 
jSkip next instruction if VP >= 160 

; The next MOVE instruction doesn't actually do a move. It forces 
; the Oopper to jump to the address in OOP2LO. This must have been 
; previously set by either the Oopper or the 68000. If VP >= 160, 
; then this instruction will be skipped. 

DC.W $008A,$OOOO ;Move 0 to OOPJMP2 (OOP2LO 
; previously set) 

USING THE COPPER IN INTERLACED MODE 

An interlaced bit-plane display has twice the normal number of vertical lines on the 
ecreen. Whereas a normal display has 200 lines, an interlaced display has 400 lines. In 
interlaced mode, the video beam scans the screen twice from top to bottom, displaying 
200 lines at a time. During the first scan, the odd-numbered lines are displayed. During 
the second scan, the even-numbered lines are displayed and interlaced with the odd
numbered ones. The scanning circuitry thus treats an interlaced display as two display 
fields, one containing the even-numbered lines and one containing the odd-numbered 
lines. Figure 2-1 shows how an interlaced display is stored in memory. 
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---

Data on 
the Screen 

Odd field - line 1 
Even field - line 1 
Odd field - line 2 
Even field - line 2 

Odd field - last line 
Even field - last line 

Data in 
Memory 

Line 1 
Line 2 
Line 3 
Line 4 

Line 399 
Line 400 

Figure 2-1: Interlaced Bit-Plane in RAM - 400 Lines Long 

The system retrieves data for bit-plane displays by using pointers to the starting address 
of the data in memory. As you can see, the starting address for the even-numbered 
fields is one line greater than the starting address for the odd-numbered fields. There
fore, the bit-plane pointer must contain a different value for alternate fields of the inter
laced display. This means that two separate Copper instruction lists are required. 

To get the Copper to execute the correct list, you set an interrupt to the 68000 just 
after the first line of the display. When the interrupt is executed, you change the con
tents of the COPILC location register to point to the second list. Then, during the 
vertical blanking interval, COPILC will be automatically reset to point to the original 
list. 

For more information about interlaced displays, see chapter 3, "Playfield Hardware." 

USING THE COPPER WITH THE BLITTER 

If the Copper is used to start up a sequence of blitter operations, it must wait for the 
blitter-finished interrupt before starting another blitter operation. Changing blitter 
registers while the blitter is operating causes unpredictable results. For just this pur
pose, the WAlT instruction includes an additional control bit, called BFD (for blitter 
finished disable). Normally, this bit is a I and only the beam counter comparisons con
trol the WAlT. 
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When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The 
Copper will WAIT until the beam counter comparison is true and the blitter has 
finished. The blitter has finished when the blitter-finished flag is set. This bit should be 
unset with caution. It could possibly prevent some screen displays or prevent objects 
from being displayed correctly. 

For more information about using the blitter, see chapter 6, "Blitter Hardware." 

THE COPPER AND THE 68000 

On those occasions when the Copper's instructions do not suffice, you can interrupt the 
68000 and use its instruction set instead. The 68000 can poll for interrupt flags set in 
the INTREQ register by various devices. To interrupt the 68000, use the Copper MOVE 
instruction to store a 1 into the following bits of INTREQ: 

Table 2-1: Interrupting the 68000 

Bit Number Name Function 

15 SET /CLR Set/Clear control bit. Determines 
if bits written with a 1 get set 
or cleared. 

4 COPEN Coprocessor interrupting 68000. 

See chapter 7, "System Control Hardware," for more information about interrupts. 

Summary of Copper Instructions 

The table below shows a summary of the bit positions for each of the Copper instruc
tions. See appendix A for a summary of all registers. 
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Table 2-2: Copper Instruction Summary 

Move Wait 

Bit# IRI IR2 IRI IR2 

15 X RD15 VP7 BFD 
14 X RD14 VP6 VE6 
13 X RD13 VP5 VE5 
12 X RD12 VP4 VE4 
11 X RD11 VP3 VE3 
10 X RDlO VP2 VE2 
09 X RD09 VPl VEl 
08 DA8 RD08 VPO YEO 
07 DA7 RD07 HP8 HE8 
06 DA6 RD06 HP7 HE7 
05 DA5 RD05 HP6 HE6 
04 DA4 RD04 HP5 HE5 
03 DA3 RD03 HP4 HE4 
02 DA2 RD02 HP3 HE3 
01 DAI RDOI HP2 HE2 
00 0 RDOO 1 0 

X = don't care, but should be a 0 for upward compatibility 
IRI = first instruction word 
IR2 = second instruction word 
DA = destination address 
RD = RAM data to be moved to destination register 
VP = vertical beam position bit 
HP = horizontal beam position bit 
VE = enable comparison (mask bit) 
HE = enable comparison (mask bit) 
BFD = blitter-finished disable 

Skip 

IRI IR2 

VP7 BFD 
VP6 VE6 
VP5 VE5 
VP4 VE4 
VP3 VE3 
VP2 VE2 
VPl VEl 
VPO YEO 
HP8 HE8 
HP7 HE7 
HP6 HEB 
HP5 HE5 
HP4 HE4 
HP3 HE3 
HP2 HE2 

1 1 
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Chapter 3 

PLAYFIELD HARDWARE 

Introduction 

The screen display of the Amiga consists of two basic parts-playfields, which are some
times called backgrounds, and sprites, which are easily movable graphics objects. This 
chapter describes how to directly access hardware registers to form play fields. 

Playfield Hardware 27 



ABOUT THIS CHAPTER 

This chapter begins with a brief overview of play field features, including definitions of 
some fundamental terms, and continues with the following major topics: 

o Forming a single "basic" play field, which is a playfield the same size as the 
display screen. This section includes concepts that are fundamental to forming 
any playfield. 

o Forming a dual-playfield display in which one playfield is superimposed upon 
another. This procedure differs from that of forming a basic playfield in some 
details. 

o Forming playfields of various sizes and displaying only part of a larger playfield. 

o Moving play fields by scrolling them vertically and horizontally. 

o Advanced topics to help you use playfields in special situations. 

For information about mova,ble sprite objects, see chapter 4, "Sprite Hardware." There 
are also movable playfield objects, which are subsections of a playfield. To move por
tions of a playfield, you use a technique called playfield animation, which is described in 
chapter 6, "Blitter Hardware." 

PLAYFIELD FEATURES 

The Amiga produces its video displays with raster display techniques. You create a 
graphic display by defining one or more bit-planes in memory and filling them with Is 
and Os to determine the colors in your display. The picture you see on the screen is 
made up of a series of horizontal video lines displayed one after the other. 
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Video Picture 

Each line represents one sweep of an electron beam 
which is "painting" the picture as it goes along. 

The video beam produces each line by sweeping 
from left to right. It produces the full screen by 
sweeping the beam from the top to the bottom, 
one line at a time. 

Figure 3-1: How the Video Display Picture Is Produced 

The video beam produces about 262 video lines from top to bottom, of which 200 nor
mally are visible on the screen. Each complete set of 262 lines is called a display field. 
A complete display field is produced in approximately 1/60th of a second; this is known 
as the field time. Between display fields, the video beam traverses the lines that are not 
visible on the screen and returns to the top of the screen to produce another display 
field. 

The display area is defined as a grid of pixels. A pixel is a single picture element, the 
smallest addressable part of a screen display. The drawings below show what a pixel is 
and how pixels form displays. 
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=O"'I1------+-----The picture is formed from many elements. 

• 
320 Pixels 

Each element is called a pixel. 

iE~--f------Pixels are used together to build larger 
graphic objects • 

... • 
640 Pixels 

In normal resolution mode, 
320 pixels fill a horizontal line. 

In high resolution mode, 
640 pixels fill a horizontal line. 

Figure 3-2: What Is a Pixel? 

The Amiga has four basic display modes - interlaced, non-interlaced, low resolution, 
and high resolution. In non-interlaced mode, the normal play field has a height of 200 
video lines. Interlaced mode gives finer vertical resolution - 400 lines in the same phy
sical display area. In low-resolution mode, the normal play field has a width of 320 pix
els. High-resolution mode gives finer horizontal resolution - 640 pixels in the same phy
sical display area. These modes can be combined, so you can have, for instance, an 
interlaced, high-resolution display. 

Note that the dimensions referred to as "normal" in the previous paragraph are nominal 
dimensions and represent the normal values you should expect to use. Actually, you can 
display larger playfields; the maximum dimensions are given in the section called "Bit
Planes and Playfields of All Sizes." Also, the dimensions of the playfield in memory are 
often larger than the playfield displayed on the screen. You choose which part of this 
larger memory picture to display by specifying a different size for the display window. 
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A play field taller than the screen can be scrolled, or moved smoothly, up or down. A 
play field wider than the screen can be scrolled horizontally, from left "to right or right to 
left. Scrolling is described in the section called "Moving (Scrolling) Play fields. " 

In the Amiga graphics system, you can have up to thirty-two different colors in a single 
playfield, using normal display methods. You can control the color of each individual 
pixel in the playfield display by setting the bit or bits that control each pixel. A display 
formed in this way is called a bit-mapped display. For instance, in a two-color display, 
the color of each pixel is determined by whether a single bit is on or off. If the bit is 0, 
the pixel is one user-defined color; if the bit is 1, the pixel is another color. For a four
color display, you build two bit-planes in memory. When the play field is displayed, the 
two bit-planes are overlapped, which means that each pixel is now two bits deep. You 
can combine up to five bit-planes in this way. Displays made up of three, four, or five 
bit-planes allow a choice of eight, sixteen, or thirty-two colors, respectively. 

The color of a pixel is always determined by the binary combination of the bits that 
define it. When the system combines bit-planes for display, the combination of bits 
formed for each pixel corresponds to the number of a color register. This method of 
coloring pixels is called color indirection. The Amiga has thirty-two color registers, each 
containing bits defining a user-selected color (from a total of 4,096 possible colors). 

Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects 
which one of the thirty-two registers to use to display the color of a playfield pixel. 
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One Pixel 

Bit-Plane 5 

Bit-Plane 4 

Bit-Plane 3 

Bits from 
Planes 
5,4,3,2,1 

00000 
00001 
00010 
00011 
00100 

11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

Figure 3-3: How Bit-planes Select a Color 

Color Registers 

Values in the highest numbered bit-plane have the highest significance in the binary 
number. As shown in figure 3-4, the value in each pixel in the highest-numbered bit
plane forms the leftmost digit of the number. The value in the next highest-numbered 
bit-plane forms the next bit, and so on. 
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Sample Data for 4 Pixels 

1 
1 
1 
o 
o 

1 
o 
o 
1 
o 

o 
1 
o 
1 
1 

o Data in Bit-Plane 5 - Most Significant 
o Data in Bit-Plane 4 
1 Data in Bit-Plane 3 
1 Data in Bit-Plane 2 
o Data in Bit-Plane 1 - Least Significant 

L Value S - COLORS 1--__ ---- Value 11 - COLOR11 
1---------- Value 18- COLOR18 

'------------- Value 28 - COLOR28 

Figure 3-4: Significance oLBit-Plane Data in Selecting Colors 

You also have the choice of defining two separate playfields, each formed from up to 
three bit-planes. Each of the two playfields uses a separate set of eight different colors. 
This is called dual-play field mode. 

Forming a Basic Playfield 

To get you started, this section describes how to directly access hardware registers to 
form a single basic playfield that is the same size as the video screen. Here, "same size" 
means that the playfield is the same size as the actual display window. This will leave a 
small border between the play field and the edge of the video screen. The playfield usu
ally does not extend all. the way to the edge. 

To form a playfield, you need to define these characteristics: 

o Height and width of the playfield and size of the display window (that is, how 
much of the playfield actually appears on the screen). 

o Color of each pixel in the playfield. 
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o Horizontal resolution. 

o Vertical resolution, or interlacing. 
( 

o Data fetch and modulo, which tell the system how much data to put on a hor
izontalline and how to fetch data from memory to the screen. 

In addition, you need to allocate memory to store the playfield, set pointers to tell the 
system where to find the data in memory, and (optionally) write a Copper routine to 
handle redisplay of the playfield. 

HEIGHT AND WIDTH OF THE PLAYFIELD 

To create a playfield that is the same size as the screen, you can use a width of either 
320 pixels or 640 pixels, depending upon the resolution you choose. The height is either 
200 lines or 400 lines, depending upon whether or not you choose interlaced mode. 

BIT-PLANES AND COLOR 

You define playfield color by: 

1. Deciding how many colors you need and how you want to color each pixel. 

2. Loading the colors into the color registers. 

3. Allocating memory for the number of bit-planes you need and setting a pointer 
to each bit-plane. 

4. Writing instructions to place a value in each bit in the bit-planes to give you the 
correct color. 

Table 3-1 shows how many bit-planes to use for the color selection you need. 
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Table 3-1: Colors in a Single Playfield 

Number of Number of 
Colors Bit-Planes 

1 - 2 1 
3 - 4 2 
5-8 3 

9 - 16 4 
17 - 32 5 

The Color Table 

The color table contains 32 registers, and you may load a different color into each of the 
registers. Here is a condensed view of the contents of the color table: 

Table 3-2: Portion of the Color Table 

Register Name Contents Meaning 

COLORO 12 bits User-defined color for the 
background area and borders. 

COLOR1 12 bits User-defined color number 1 
(For example, the alternate color 
selection for a two-color playfield). 

COLOR2 12 bits User-defined color number 2. 

COLOR31 12 bits User-defined color number 31. 

COL ORO is always reserved for the background color. The background color shows in 
any area on the display where there is no other object present and is also displayed out
side the defined display, window, in the border area. 
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If you are using the optional genlock board for video input from a camera, VCR, or laser 
disk, the background color will be replaced by the incoming video display. 

Twelve bits of color selection allow you to define, for each of the 32 registers, one of 
4,096 possible colors, as shown in table 3-3. 

Table 3-3: Contents of the Color Registers 

Bits 

Bits 15 - 12 
Bits 11 - 8 
Bits 7 - 4 
Bits 3 - 0 

Unused 
Red 
Green 
Blue 

Table 3-4 shows some sample color register bit assignments and the resulting colors. At 
the end of the chapter is a more extensive list. 

Table 3-4: Sample Color Register Contents 

Contents or the 
Color Register 

$FFF 
$6FE 
$DB9 
$000 

Resulting 
Color 

White 
Sky blue 
Tan 
Black 

Some sample instructions for loading the color registers are shown below; 

LEA 
MOVE.W 
MOVE.W 

COLORO, AO 
#$FFF, (AO) 
#$6FE, 2(AO) 

;Get address of color register 0 into aO 
;Load white into color register 0 
;Load sky blue into color register 1 

Note that the color registers are write-only. Only by looking at the screen can you find 
out the contents of each color register. As a standard practice, then, for these and cer
tain other write-only registers, you may wish to keep a "back-up" RAM copy. As you 
write to the color register itself, you should update this RAM copy. If you do so, you 
will always know the value each register contains. 
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Selecting the Number of Bit-Planes 

After deciding how many colors you want and how many bit-planes are required to give 
you those colors, you tell the system how many bit-planes to use. 

You select the number of bit-planes by writing the number into the register BPLCONO 
(for Bit Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named 
BPU2, BPUl, and BPUO (for "Bit Planes Used"). Table 3-5 shows the values to write to 
these bits and how the system assigns bit-plane numbers. 

Table 3-5: Setting the Number of Bit-Planes 

Number of Name(s) of 
Value Bit-Planes Bit-Planes 

000 None * 
001 1 PLANE 1 
010 2 PLANES 1 and 2 
011 3 PLANES 1- 3 
100 4 PLANES 1· 4 
101 5 PLANES 1· 5 
110 6 PLANES 1 • 6 ** 
111 Value not used. 

* Shows only a background color; no playfield is visible. 

** Sixth bit-plane is used only in dual-playfield mode and in hold-and
modify mode (described in the section called "Advanced Topics"). 

NOTE 

The bits in the BPLCONO register are not independently set table. To set any 
one bit, you must reload them all. 
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The following example shows how to tell the system to use two low-resolution bit-planes. 

BPLCONO EQU $DFF100 
MOVE.W #$2200,BPLCONO 

jBPLCONO address 
; Write to it 

Because register BPLCONO is used for setting other characteristics of the display and 
the bits are not independently settable, the example above also sets other parameters (all 
of these parameters are described later in the chapter). 

o Hold-and-modify mode is turned off. 

o Single-playfield mode is set. 

o Composite video color is enabled. 

o Genlock audio is disabled. 

o Light pen is disabled. 

o Interlaced mode is disabled. 

o External resynchronization is disabled. 

SELECTING HORIZONTAL AND VERTICAL RESOLUTION 

Standard home television screens are best suited for low-resolution displays. Low
resolution mode provides 320 pixels for each horizontal line. High-resolution mono
chrome and RGB monitors can produce displays in high-resolution mode, which provides 
640 pixels for each horizontal line. If you define an object in low-resolution mode and 
then display it in high-resolution mode, the object will be only half as wide. 

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO: 

High-resolution mode - write 1 to bit 15. 
Low-resolution mode - write 0 to bit 15. 

Note that in high-resolution mode, you can have up to four bit-planes in the playfield 
and, therefore, up to 16 colors. 
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Interlacing allows you to double the number of lines appearing on the video screen. 
Generally, in non-interlaced mode, 200 lines fill the screen and a playfield of normal size 
appears full-sized. In interlaced mode, normally, a maximum of 400 lines fill the screen. 
Twice as much data is displayed in the same vertical area as in non-interlaced mode. 

In interlaced mode, the scanning circuitry vertically offsets the start of every other field 
by half a scan line. 

Line 1 

Field 1 

line 1 

Field 2 

\ Line 1 

/ Line 2 
Video Display 

(400 lines) 

(Same physical space as used by 
a 200 line non interlaced display.) 

Figure 3-5: Interlacing 

Even though interlaced mode requires a modest amount of extra work in setting registers 
(as you will see later on in this section), it provides fine tuning that is needed for certain 
graphics effects. Consider the diagonal line in figure 3-6 as it appears in non-interlaced 
and interlaced modes. Interlacing eliminates much of the jaggedness or "staircasing" in 
the edges of the line. 
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Non-I nterlaced Interlaced 

Figure 3-6: Effect of Interlaced Mode on Edges of Objects 

When you use the special blitter DMA channel to draw lines or polygons onto an inter
laced playfield, the play field is treated as one display, rather than as odd and even fields. 
Therefore, you still get the smoother edges provided by interlacing. 

To set interlaced or non-interlaced mode, you write to bit 2, LACE, III register 
BPLCONO: 

Interlaced mode - write 1 to bit 2. 
Non-interlaced mode - write 0 to bit 2. 

As explained above in "Setting the Number of Bit-Planes," bits in BPLCONO are not 
independently settable. 

The following example shows how to specify high-resolution and interlaced modes. 

BPLCONO EQU $DFFlOO 
MOVE.W #$A204,BPLCONO 

;BPLCONO address 
; Write to it 

The example above also sets the following parameters that are also controlled through 
register BPLCONO: 

o High-resolution mode is enabled. 

o Two bit-planes are used. 
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o Hold-and-modify mode is disabled. 

o Single-playfield mode is enabled. 

o Composite video color is enabled. 

o Genlock audio is disabled. 

o Light pen is disabled. 

o In terlaced mode is enabled. 

o External resynchronization is disabled. 

The amount of memory you need to allocate for each bit-plane depends upon the resolu
tion modes you have selected, because high-resolution or interlaced playfields contain 
more data and require larger bit-planes. 

ALLOCATING MEMORY FOR BIT-PLANES 

After you set the number of bit-planes and specify resolution modes, you are ready to 
allocate memory. A bit-plane consists of an end-to-end sequence of words at consecutive 
memory locations. To allocate memory, you set the registers that point to the starting 
memory address of each bit-plane you are using. The starting address is the memory 
word that contains the bits of the upper left-hand corner of the bit-plane. 

Table 3-6 shows how much memory is needed for basic playfields. You may need to bal
ance your color and resolution requirements against the amount of available memory you 
have. 
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Table 3-6: Play field Memory Requirements 

Number of Bytes 
Picture Size Modes per Bit-Plane 

320 X 200 Low-resolution, 8,000 
non-interlaced 

320 X 400 Low-resolu tion, 16,000 
interlaced 

640 X 200 High-resolution, 16,000 
non-interlaced 

640 X 400 High-resolu tion, 32,000 
interlaced 

A normal low-resolution, non-interlaced display has 320 pixels across each display line 
and a total of 200 display lines. Each line of the bit-plane for such a display requires 40 
bytes (320 bits divided by 8 bits per byte = 40). 

A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000 
bytes of memory area. The memory for each bit-plane must be continuous, so you need 
to have two 8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte 
memory area organized as 200 lines of 40 bytes each, providing 1 bit for each pixel posi
tion in the display plane. 
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II ����I�I------------------------------------~~II IIIII II 
Mem. Location N Mem. Location N+38 

111111111 ~IIIIIIIII 
Mem. Location N+40 Mem. Location N+78 

II I II II II------------------------------~~III III I II 
Mem. Location N+7960 Mem. Location N+7998 

Figure 3-7: Memory Organization for a Basic Bit-Plane 

Access to bit-planes in memory is provided by two address registers, BPLxPTH and 
BPLxPTL, for each bit-plane (12 registers in all). The "x" position in the name holds 
the bit-plane number; for example BPLIPTH and BPLIPTL hold the starting address of 
PLANE 1. As usual, pairs of registers with names ending in PTH and PTL contain 19-
bit addresses. 68000 programmers may treat these as one 32-bit address and write to 
them as one long word. You write to the high-order word, which is the register whose 
name ends in "PTH." 

The example below shows how to set the bit-plane pointers. Assuming two bit-planes, 
one at $21000 and the other at $25000, the processor sets BPLIPT to $21000 and 
BPL2PT to $25000. Note that this is usually the Copper's task. 

BPLIPTH EQU 
BPLIPTL EQU 
BPL2PTH EQU 
BPL2PTL EQU 

$DFFOEO 
$DFFOE2 
$DFFOE4 
$DFFOE6 

MOVE.L $21000,BPLIPTH 
MOVE.L $25000,BPL2PTH 

;High three bits of bit-plane 1 pointer 
;Low fifteen bits 
;High three bits of bit-plane 2 pointer 
;Low fifteen bits 

; Write bit-plane 1 pointer 
; Write bit-plane 2 pointer 
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Note that the memory requirements given here are for the playfield only. You may need 
to allocate additional memory for other parts of the display - sprites, audio, animation 
- and for your application programs. Memory allocation for other parts of the display 
is discussed in the chapters describing those topics. 

CODING THE BIT-PLANES FOR CORRECT COLORING 

After you have specified the number of bit-planes and set the bit-plane pointers, you can 
actually write the color register codes into the bit-planes. 

A One- or Two-Color Playfield 

For a one-color playfield, all you need do is write Os in all the bits of the single bit-plane 
as shown in the example below. This code fills a low-resolution bit-plane with the back
ground color (COLOROO) by writing all Os into its memory area. The bit-plane starts at 
$21000 and is 8,000 bytes long. 

LOOP: 

LEA $21000,A-0 
MOVE.W #2000,DO 
MOVE.L #O,(AO)+ 
SUBQ.W #1,DO 
BNE LOOP 

jPoint at bit-plane 
j Write 2000 longwords = 8000 bytes 
; Write out a zero 
jDecrement counter 
jLoop until bit-plane is filled with Os 

For a two-color playfield, you define a bit-plane that has Os where you want the back
ground color and Is where you want the color in register 1. The following example code 
is identical to the last example, except the bit-plane is filled with $FFOOFFOO instead of 
all O's. This will produce two colors. 

LOOP: 

LEA $21000,AO 
MOVE.W #2000,DO 
MOVE.L #$FFOOFFOO,(AO)+ 
SUBQ.W #1,DO 
BNE LOOP 
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A Playfield of Three or More Colors 

For three or more colors, you need more than one bit-plane. The task here is to define 
each bit-plane in such a way that when they are combined for display, each pixel con
tains the correct combination of bits. This is a little more complicated than a playfield 
of one bit-plane. The following examples show a four-color playfield, but the basic idea 
and procedures are the same for playfields containing up to 32 colors. 

Figure 3-8 shows two bit-planes forming a four-color playfield: 

Image in 
Bit-Plane 2 

OOO~OOOO 
000 0 0 0 0 0 
o 0 0 0 0 0 0 0 
11100111 
11100111 

000[J]1000 
000 1 1 000 
000 1 100 0 

Image in 
Bit-Plane 

o 0 0[TI1 000 
000 1 100 0 
000 1 100 0 
11100111 
11100111 

o 0 0[J]1 0 0 0 
000 1 1 000 
000 1 1 000 

~/ 

Results in a display 
similar to this: 

Figure 3-8: Combining Bit-planes 

Color 00 
(background) 

You place the correct Is and Os in both bit-planes to give each pixel in the picture above 
the correct color. 

In a single play field you can combine up to five bit-planes in this way. Using five bit
planes allows a choice of 32 different colors for any single pixel. The play field color selec
tion charts at the end of this chapter summarize the bit combinations for playfields 
made from four and five bit-planes. 
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DEFINING THE SIZE OF THE DISPLAY WINDOW 

Mter you have completely defined the playfield, you need to define the size of the 
display window, which is the actual size of the on-screen display. Adjustment of display 
window size affects the entire display area, including the border and the sprites, not just 
the playfield. You cannot display objects outside of the defined display window. Also, 
the size of the border around the playfield depends on the size of the display window. 

The basic playfield described in this section is the same size as the screen display area 
and also the same size as the display window. This is not always the case; often the 
display window is smaller than the actual "big picture" of the playfield as defined in 
memory (the raster). A display window that is smaller than the play field allows you to 
display some segment of a large playfield or scroll the playfield through the window. 
You can also define display windows larger than the basic playfield. These larger 
playfields and different-sized display windows are described in the section below called 
"Bit-Planes and Display Windows of All Sizes." 

You define the size of the display window by specifying the vertical and horizontal posi
tions at which the window starts and stops and writing these positions to the display 
window registers. The resolution of vertical start and stop is one scan line. The resolu
tion of horizontal start and stop is one low-resolution pixel. Each position on the screen 
defines the horizontal and vertical position of some pixel, and this position is specified by 
the x and y coordinates of the pixel. This document shows the x and y coordinates in 
this form: (x,y). Although the coordinates begin at (0,0) in the upper left-hand corner of 
the screen, the first horizontal position normally used is $81 and the first vertical posi
tion is $20. The hardware allows you to specify a starting position before ($81,$20), 
but part of the display may not be visible. The difference between the absolute starting 
position of (0,0) and the normal starting position of ($81,$20) is the result of the way 
many video display monitors are designed. To overcome the distortion that can occur at 
the extreme edges of the screen, the scanning beam sweeps over a larger area than the 
front face of the screen can display. A starting position of ($81,$20) centers a normal 
size display, leaving a border of eight low-resolution pixels around the display window. 
Figure 3-9 shows the relationship between the normal display window, the visible screen 
area, and the area actually covered by the scanning beam. 
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($81, $2C) 

~--~----320--------~ 

200 

display window 
Starting and stopping positions 

, 

Visible screen boundaries 

Figure 3-9: Positioning the On-screen Display 

Setting the Display Window Starting PosiJiion 

A horizontal starting position of approximately $81 and a vertical starting position of 
approximately $20 centers the display on most standard television screens. If you select 
high-resolution mode (640 pixels horizontally) or interlaced mode (400 lines) the starting 
position does not change. The starting position is always interpreted in low-resolution, 
non-interlaced mode. In other words, you select a starting position that represents the 
correct coordinates in low-resolution, non-interlaced mode. 

The register DIWSTRT (for "Display Window Start") controls the display window start
ing position. This register contains both the horizontal and vertical components of the 
display window starting positions, known respectively as HSTART and VSTART. The 
following example sets DIWSTRT for a basic playfield. You write $20 for VSTART and 
$81 for HSTART. 
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DIWSTRT EQU $DFF08E 

MOVE.W #$2081,DIWSTRT 

Setting the Display Window Stopping Position 

jDisplay window start 
; register address 

j Write it out 

You also need to set the display window stopping position, which is the lower right-hand 
corner of the display window. If you select high-resolution or interlaced mode, the stop
ping position does not change. Like the starting position, it is interpreted in low
resolution, non-interlaced mode. 

The register DIWSTOP (for Display Window Stop) controls the display window stopping 
position. This register contains both the horizontal and vertical components of the 
display window stopping positions, known respectively as HSTOP and VSTOP. The 
instructions below show how to set HSTOP and VSTOP for the basic playfield, assum
ing a starting position of ($81,$20). Note that the HSTOP value you write is the actual 
value minus 256 ($100). The HSTOP position is restricted to the right-hand side of the 
screen. The normal HSTOP value is ($101) but is written as ($01). 

The VSTOP position is restricted to the lower half of the screen. This is accomplished 
in the hardware by forcing the MSB of the stop position to be the complement of the 
next MSB. This allows for a VSTOP position greater than 256 ($100) using only 8 bits. 
Normally, the VSTOP is set to ($F4). 

The normal DIWSTRT is ($2081). The normal DIWSTOP is ($F401). 

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical posi
tion and $01 for the horizontal position. 

DIWSTOP EQU $DFF090 

MOVE.W #$F401,DIWSTOP 
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TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA 

After defining the size and position of the display window, you need to give the system 
the on-screen location for data fetched from memory. To do this, you describe the hor
izontal positions where each line starts and stops and write these positions to the data
fetch registers. The data-fetch registers have a four-pixel resolution (unlike the display 
window registers, which have a one-pixel resolution). Each position specified is four pix
els from the last one. Pixel 0 is position 0; pixel 4 is position 1, and so on. 

The data-fetch start and display window starting positions interact with each other. It 
is recommended that data-fetch start values be restricted to a programming resolution of 
16 pixels (8 clocks in low-resolution mode, 4 clocks in high-resolution mode). The 
hardware requires some time after the first data fetch before it can actually display the 
data. As a result, there is a difference between the value of window start and data-fetch 
start. In low-resolution mode the difference is 8.5 clocks; in high-resolution mode the 
difference is 4.5 clocks. 

The normal low-resolution DDFSTRT is ($0038). The normal high-resolution 
DDFSTRT is ($003C). Recall that the hardware resolution of display window start and 
stop is twice the hardware resolution of data fetch: 

($81/2 - 8.5) = ($38) 
($81/2 - 4.5) = ($3C) 

The relationship between data-fetch start and stop is 

DDFSTRT = DDFSTOP - (8*(word count - 1) for low resolution 
DDFSTRT = DDFSTOP - (4*(word count - 2) for high resolution 

The normal low-resolution DDFSTOP is ($OODO). The normal high-resolution 
DDFSTOP is ($00D4). 

The following example sets data-fetch start to $0038 and data-fetch stop to $ooDO for a 
basic playfield. 

DDFSTRT EQU 
DDFSTOP EQU 

MOVE.W 
MOVE.W 

$DFF092 
$DFF094 

#$0038,DDFSTRT 
#$OODO,DDFSTOP 

; Write to DDFSTRT 
; Write to DDFSTOP 
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You also need to tell the system exactly which bytes in memory belong on each horizon
tal line of the display, To do this, you specify the modulo value. Modulo refers to the 
number of bytes in memory between the last word on one horizontal line and the begin
ning of the first word on the next line. Thus, the modulo enables the system to convert 
bit-plane data stored in linear form (each data byte at a sequentially increasing memory 
address) into rectangular form (one "line" of sequential data followed by another line). 
For the basic playfield, where the playfield in memory is the same size as the display 
window, the modulo is zero because the memory area contains exactly the same number 
of bytes as you want to display on the screen. Figures 3-10 and 3-11 show the basic 
bit-plane layout in memory and how to make sure the correct data is retrieved. 

The bit-plane address pointers (BPLxPTH and BPLxPTL) are used by the system to 
fetch the data to the screen. These pointers are dynamic; once the data fetch begins, 
the pointers are continuously incremented to point to the next word to be fetched (data 
is fetched two bytes at a time). When the end-of-line condition is reached (defined by 
the data-fetch register, DDFSTOP) the modulo is added to the bit-plane pointers, 
adjusting the pointer to the first word to be fetched for the next horizontal line. 

Data for Line 1: 

Location: START 

Leftmost 
Display Word 

START+2 

Next Word 

START+4 

Next Word 

Screen data fetch stops (DDFSTOP) for 
each horizontal line after the last word 
on the line has been fetched. 

Figure 3-10: Data Fetched for the First Line When Modulo = 0 

START+38 

Last Display 

T 

After the first line is fetched, the bit-plane pointers BPLxPTH and BPLxPTL contain 
the value START+40. The modulo (in this case, 0) is added to the current value of the 
pointer, so when the pointer begins the data fetch for the next line, it fetches the data 
you want on that line. The data for the next line begins at memory location 
START+40. 

50 Playfield Hardware 



Data for Line 2: 

Location: START+40 

Leftmost 
Display Word 

START+42 

Next Word 

START+44 

Next Word 

START+78 

Last Display 
Word 

Figure 3-11: Data Fetched for the Second Line When Modulo = 0 

Note that the pointers always contain an even number, because data is fetched from the 
display a word at a time. 

There are two modulo registers-BPL1MOD for the odd-numbered bit-planes and 
BPL2MOD for the even-numbered bit-planes. 

The following example sets the modulo to 0 for a low-resolution playfield with one bit
plane. The bit-plane is odd-numbered. 

BPL1MOD EQU $DFF108 jModulo Jor odd bit-planes 

MOVE.W #0,BPL1MOD j8et modulo to 0 

Data Fetch in High-resolution Mode 

When you are using high-resolution mode to display the basic playfield, you need to 
fetch 80 bytes for each line, instead of 40. 

Modulo in Interlaced Mode 

For interlaced mode, you must redefine the modulo, because interlaced mode uses two 
separate scannings of the video screen for a single display of the playfield. During the 
first scanning, the odd-numbered lines are fetched to the screenj and during the second 
scanning, the even-numbered lines are fetched. 
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The bit-planes for a full-screen-sized, interlaced display are 400, rather than 200, lines 
long. Assuming that the playfield in memory is the normal 320 pixels wide, data for the 
interlaced picture begins at the following locations (these are all byte addresses): 

Line 1 START 
Line 2 START+40 
Line 3 START+80 
Line 4 START+120 

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For 
odd fields, the bit-plane pointers begin at START. For even fields, the bit-plane 
pointers begin at START+40. 

You can use the Copper to handle resetting of the bit-plane pointers for interlaced 
displays. 

DISPLAYING AND REDISPLAYING THE PLAYFIELD 

You start playfield display by making certain that the bit-plane pointers are set and 
bit-plane DMA is turned on. You turn on bit-plane DMA by writing a 1 to bit BPLEN 
in the DMACON (for DMA control) register. See chapter 7, "System Control 
Hardware," for instructions on setting this register. 

Each time the playfield is redisplayed, you have to reset the bit-plane pointers. Reset
ting is necessary because the pointers have been incremented to point to each successive 
word in memory and must be repointed to the first word for the next display. You write 
Copper instructions to handle the redisplay or perform this operation as part of a verti
cal blanking task. 

ENABLING THE COLOR DISPLAY 

To enable color rather than black and white display, you need to set bit 9 in BPLCONO. 
Doing so enables the color burst signal on composite video; it does not affect RGB video. 
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SUMMARY 

The steps for defining a basic playfield are summarized below: 

1. Define Playfield Characteristics 

a. Specify height in lines: 

o 200 maximum for non-interlaced mode. 

o 400 maximum for interlaced mode. 

b. Specify width in pixels: 

o 320 maximum for low-resolution mode. 

o 640 maximum for high-resolution mode. 

c. Specify color for each pixel: 

o Load desired colors in color table registers. 

o Define color of each pixel in terms of the binary value that points at the 
desired color register. 

o Build bit-planes. 

o Set bit-plane registers: 

* Bits 12-14 in BPLCONO - number of bit-planes (BPU2 - BPUO). 

* BPLxPTH - pointer to bit-plane starting position in memory (written as 
a long word). 

d. Specify resolution: 

o Low resolution: 

* 320 pixels in each horizontal line. 

* Clear bit 15 in register BPLCONO (HIRES). 
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o High resolution: 

* 640 pixels in each horizontal line. 

* Set bit 15 in register BPLCONO (HIRES). 

e. Specify interlaced or non-interlaced mode: 

o Interlaced mode: 

* 400 vertical lines. 

* Set bit 2 in register BPLCONO (LACE). 

o Non-interlaced mode: 

* 200 vertical lines. 

* Clear bit 2 in BPLCONO (LACE). 

2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the follow
ing formula: 

Bytes per line * lines in playfield * number of bit-planes 

3. Define Size of Display Window. 

o Write start position of display window in DIWSTRT: 

* Horizontal position in bits 0 through 7 (low-order bits). 

* Vertical position in bits 8 through 15 (high-order bits). 

o Write stop position of display window in DIWSTOP: 

* Horizontal position in bits 0 through 7. 

* Vertical position in bits 8 through 15. 

4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP: 

o For DDFSTRT, use the horizontal position as shown in "Setting the Display 
Window Starting Position." 

o For DDFSTOP, use the horizontal position as shown in "Setting the Display 
Window Stopping Position." 
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5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for 
non-interlaced, 40 for interlaced. 

6. Write Copper Instructions To Handle Redisplay. 

7. Enable Color Display. Set bit 9 in BPLCONO to enable the color display on a 
composite video monitor. RGB video is not affected. 

EXAMPLES OF FORMING BASIC PLAYFIELDS 

The following examples show how to set the registers and write the coprocessor lists for 
two different play fields. 

The first example sets up a 320 x 200 playfield with one bit-plane, which is located at 
$21000. Also, a Copper list is set up at $20000. 

CUSTOM 
BPLCONO 
BPLCONI 
BPLCON2 
BPLIMOD 
DDFSTRT 
DDFSTOP 
DIWSTRT 
DIWSTOP 
VPOSR 
COLOROO 
COLOROI 
COLOR02 
COLOR03 
DMACON 
COPILCH 

LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 

EQU $DFFOOO 
EQU $100 
EQU $102 
EQU $104 
EQU $108 
EQU $092 
EQU $094 
EQU $08E 
EQU $090 
EQU $004 
EQU $180 
EQU $182 
EQU $184 
EQU $186 
EQU $096 
EQU $080 

CUSTOM,AO 
#$1200,BPLCONO(AO) 
#O,BPLCONl(AO) 
#O,BPLIMOD(AO) 
#$0038,DDFSTRT(AO) 
#$OODO,DDFSTOP(AO) 
#$2C81,DIWSTRT(AO) 
#$F4Cl,DIWSTOP(AO) 
#$OFOO, COLOROO(AO) 
#$OFFO,COLOROl(AO) 

; Copper location register 1 
; (high three bits) 
;AO points at custom chips 
; One bit-plane, enable composite color 
;Set horizontal scroll value to 0 
;Set modulo to 0 for all odd btt-planes 
;Set data-fetch start to $38 
;Set data-fetch stop to $DO 
;Set DIWSTRT to $2C81 
;Set DIWSTOP to $F4C1 
;Set background color to red 
;Set color register 1 to yellow 
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· , 
i Fill bit-plane with $FFOOFFOO to produce strzpes 

MOVE.L #$21000,Al 
MOVE.L #$FFOOFFOO,DO 
MOVE.W #2000,Dl 

LOOP: MOVE.L DO,(Al)+ 
SUBQ.W #l,Dl 
BNE LOOP 

, 
i Set up Copper list at $20000 

MOVE.L 
LEA 

CLOOP: MOVE.L 
CMPI.L 
BNE 

, 

#$20000,Al 
COPPERL,A2 
(A2),(Al)+ 
#$FFFFFFFE,(A2)+ 
CLOOP 

i Point Copper at Copper list 

-, 

MOVE.L 
MOVE."V 

i Start DMA 

, 

MOVE.W 
BRA 

#$20000,COPILCH(AO) 
COP JMP1 (AO),DO 

#$8380,DMACON(AO) 

i This is the data for the Copper list. 

COPPERL: 
DC.W 

DC.W 

DC.W 

$OOEO,$0002 

$OOE2,$1000 

$FFFF ,$FFFE 

iPoint at beginning of bit-plane 
i We will write $FFOOFFOO long words 
j 2000 long words = 8000 bytes 

i Write a long word 
iDecrement counter 
iLooP until-bit-plane is filled 

iPoint at Copper list destination 
jPoint A2 at Copper list data 
iMove a word 
iCheck for last longword of Copper list 
iLooP until entire copper list is moved 

i Write to Copper location register 
iForce copper to $20000 

iEnable bit-plane and Copper DMA 
; Go do next task 

iMove $0002 to address $OEO 
i (BPL1PTHj 
jMove $1000 to address $OE2 
j (BPL1PTLj 
jEnd of Copper list 

Th.e second example sets up a high-resolution, interlaced display with one bit-plane. The 
equates are the same as the previous example so they aren't repeated here. 

LEA CUSTOM,AO jAddress of custom chips 
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. , 

MOVE.W #$9204,BPLCONO(AO) 
MOVE.W #O,BPLCON1(AO) 
MOVE.W #80,BPL1MOD(AO) 
MOVE.W #80,BPL2MOD(AO) 
MOVE.W #$003C,DDFSTRT(AO) 
MOVE.W #$00D4,DDFSTOP(AO) 
MOVE.W #$2C81,DIWSTRT(AO) 
MOVE.W #$F4C1,DIWSTOP(AO) 

j Set up color registers 

, 

MOVE.W #$OOOF,COLOROO(AO) 
MOVE.W #$OFFF ,COLOR01(AO) 

j Set up bit-plane at $20000 

L1: 

L2: 

LEA $20000,A1 
LEA CHARLIST,A2 
MOVE.W #400,D1 
MOVE.W #20,DO 

MOVE.L (A2),(A1)+ 
SUBQ.W #l,DO 
BNE L1 

MOVE.W #20,DO 
ADDQ.L #4,A2 
CMPI.L #$FFFFFFFF ,(A2) 
BNE L2 
LEA CHARLIST,A2 

SUBQ.W #1,D1 
BNE L1 

j Start DMA 

MOVE.W #$8300,DMACON(AO) 

jHires, one bit-plane, interlaced 
jHorizontal scroll value = 0 
jModulo = 80 for odd bit-planes 
jDitto for even bit-planes 
jSet data-fetch start for hires 
jSet data-fetch stop 
;Set display window start 
jSet display window stop 

jBackground color = blue 
;Foreground color = white 

jPoint At at bit-plane 
;A2 points at character data 
; Write 400 lines of data 
j Write 20 long words per line 

j Write a long word 
jDecrement counter 
jLoop until line is full 

jReset long word counter 
jPoint at next word in char list 
jEnd of char list? 

j Yes, reset A2 to beginning of list 

jDecrement line counter 
jLoop until all lines are full 

jEnable bit-plane DMA only, 
j no Copper 

Because this example has no Copper list, it sits in a loop waiting for the vertical blank
ing interval. When it comes, you check the LOF ("long frame") bit in VPOSR. If 
LOF = 0, this is a short frame and the bit-plane pointers are set to point to $20050. If 
LOF = 1, then this is a long frame and the bit-plane pointers are set to point to $20000. 
This keeps the long and short frames in the right relationship to each other. 
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VLOOP: MOVE.W 

VLl: 

AND.W 
BEQ 
MOVE.W 
MOVE.W 
BPL 
MOVE.L 
BRA 

MOVE.L 
BRA 

; Character list 

INTREQR(AO),DO 
#$0020,DO 
VLOOP 
#$0020,INTREQ(AO) 
VPOSR(AO),DO 
VLl 
#$20000,BPLIPTH(AO) 
VLOOP 

#$20050,BPLIPTH(AO) 
VLOOP 

;Read interrupt requests 
jMask off all but vertical blank 
jLoop until vertical blank comes 
jReset vertical interrupt 
jRead LOF bit into DO bit 15 
jlf LOF = 0, jump 
;LOF = 1, point to $20000 
;Back to top 

;LOF = 0, point to $20050 
;Back to top 

DC.L $18FC3DFO,$3C6666D8,$3C66COCC,$667CCOCC 
DC.L $7E66COCC,$C36666D8,$C3FC3DFO,$OOOOOOOO 
DC.L $FFFFFFFF 

Forming a Dual-playfield Display 

For more flexibility in designing your background display, you can specify two playfields 
instead of one. In dual-playfield mode, one play field is displayed directly in front of the 
other. For example, a computer game display might have some action going on in one 
playfield in the background, while the other playfield is showing a control panel in the 
foreground. You can then change either the foreground or the background without hav
ing to redesign the entire display. You can also move the two playfields independently. 

A dual-playfield display is similar to a single-playfield display, differing only in these 
aspects: 

o Each play field in a dual display is formed from one, two or three bit-planes. 

o The colors in each playfield (up to seven plus transparent) are taken from 
different sets of color registers. 

o You must set a bit to activate dual-playfield mode. 
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Figure 3-12 shows a dual-playfield display. 

Playfield 1 (1, 2, or 3 bit-planes) * Playfield 2 (1, 2, or 3 bit-planes)* 

0000 

FUEL 

~ 
HEADING 

---~-

52 

OIL 

Both playfields appear on-screen, 
combined to form the complete 

display. 

123 10 
MISSILES OIL 

Figure 3-12: A Dual-playfield Display 

-

The background 
color shows 
through where 
there are 
transparent 
sections of 
both 
playfields. 

In figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 
and color 8 in playfield 2). You can use transparency to allow selected features of the 
background playfield to show through. 
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In dual-playfield mode, each play field is formed from up to three bit-planes. Color regis
ters 0 through 7 are assigned to playfield 1, depending upon how many bit-planes you 
use. Color registers 8 through 15 are assigned to playfield 2. 

Bit-Plane Assignment in Dual-playfield Mode 

The three odd-numbered bit-planes (I, 3, and 5) are grouped together by the hardware 
and may be used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and 
6) are grouped together and may be used in playfield 2. The bit-planes are assigned 
alternately to each playfield, as shown in figure 3-13. Note that in high-resolution mode, 
you can have up to two bit-planes in each playfield - bit-planes 1 and 3 in playfield 1 
and bit-planes 2 and 4 in playfield 2. 

60 Play field Hardware 



Number of 
Bit-Planes 

"Turned on" Playfield 1 * Playfield 2* 

0 None None 

1 

C ) 

2 r ) e ) 

3 D 0 
4 0 eo 
5 

6 

*NOTE: Either playfield may be placed "in front of" or "behind" the other using the 
"swap=bit_" 

Figure 3-13: How Bit-Planes Are Assigned to Dual Playfields 
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COLOR REGISTERS IN DUAL-PLAYFIELD MODE 

When you are using dual playfields, the hardware interprets color numbers for playfield 
1 from the bit combinations of bit-planes I, 3, and S. Bits from PLANE S have the 
highest significance and form the most significant digit of the color register number. 
Bits from PLANE 0 have the lowest significance. These bit combinations select the first 
eight color registers from the color palette as shown in table 3-7. 

Table 3-7: Playfield 1 Color Registers - Low-resolution Mode 

PLAYFIELD 1 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR1 
010 COLOR2 
011 COLOR3 
100 COLOR4 
101 COLORS 
110 COLOR6 
111 COLOR7 

The hardware interprets color numbers for playfield 2 from the bit combinations of bit
planes 2, 4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 
2 have the lowest significance. These bit combinations select the color registers from the 
second eight colors in the color table as shown in table 3-8. 
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Table 3-8: Playfield 2 Color Registers - Low-resolution Mode 

PLAYFIELD 2 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR9 
010 COLORlO 
011 COLOR11 
100 COLOR12 
101 COLOR13 
110 COLOR14 
111 COLOR15 

Combination 000 selects transparent mode, to show the color of whatever object (the 
other playfield, a sprite, or the background color) may be "behind" the playfield. 

Table 3-9 shows the color registers for high-resolution, dual-playfield mode. 

Table 3-9: Playfields 1 and 2 Color Registers - High-resolution Mode 

PLAYFIELD 1 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLORI 
10 COLOR2 
11 COLOR3 

PLAYFIELD 2 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLOR9 
10 COLORI0 
11 COLOR11 
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DUAL-PLAYFIELD PRIORITY AND CONTROL 

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of 
the other, although playfield 1 normally has priority. The bit known as PF2PRI (bit 6) 
in register BPLCON2 is used to control priority. When PF2PRI = 1, playfield 2 has 
priority over playfield 1. When PF2PRI = 0, play field 1 has priority. 

You can also control the relative priority of play fields and sprites. Chapter 7, "System 
Control Hardware," shows you how to control the priority of these objects. 

You can control the two playfields separately as follows: 

o They can have different-sized representations in memory, and different portions 
of each one can be selected for display. 

o They can be scrolled separately. 

NOTE: 

You must take special care when scrolling one play field and holding the other 
stationary. When you are scrolling low-resolution play fields, you must fetch one 
word more than the width of the play field you are trying to scroll (two words 
more in high-resolution mode) in order to provide some data to display when the 
actual scrolling takes place. Only one data-fetch start register and one data
fetch stop register are available, and these are shared by both playfields. If you 
want to scroll one playfield and hold the other, you must adjust the data-fetch 
start and data-fetch stop to handle the playfield being scrolled. Then, you must 
adjust the modulo and the bit-plane pointers of the playfield that is not being 
scrolled to maintain its position on the display. In low-resolution mode, you 
adjust the pointers by -2 and the modulo by -2. In high-resolution mode, you 
adjust the pointers by -4 and the modulo by -4. 

ACTIVATING DUAL-PLAYFIELD MODE 

Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCONO selects 
dual-playfield mode. Selecting dual-playfield mode changes both the way the hardware 
groups the bit-planes for color interpretation-all odd-numbered bit-planes are grouped 
together and all even-numbered bit-planes are grouped together-and the way hardware 
can move the bit-planes on the screen. 
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SUMMARY 

The steps for defining dual play fields are almost the same as those for defining the basic 
playfield. Only in the following steps does the dual-playfield creation process differ from 
that used for the basic playfield: 

o Loading colors into the registers. Keep in mind that color registers 0-7 are 
used by playfield 1 and registers 8 through 15 are used by playfield 2 (if there 
are three bit-planes in each playfield). 

o Building bit-planes. Recall that playfield 1 is formed from PLANES 1, 3, and 
5 and playfield 2 from PLANES 2, 4, and 6. 

o Setting the modulo registers. Write the modulo to both BPLIMOD and 
BPL2MOD as you will be using both odd- and even-numbered bit-planes. 

These steps are added: 

o Defining priority. If you want playfield 2 to have priority, set bit 6 (PF2PRI) 
in BPLCO N2 to 1. 

o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1. 

Bit-planes and Display Windows of All Sizes 

You have seen how to form single and dual play fields in which the playfield in memory 
is the same size as the display window. This section shows you how to define and use a 
play field whose big picture in memory is larger than the display window, how to define 
display windows that are larger or smaller than the normal playfield size, and how to 
move the display window in the big picture. 

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW 

If you design a memory picture larger than the display window, you must choose which 
part of it to display. Displaying a portion of a larger playfield differs in the following 
ways from displaying the basic playfields described up to now: 
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o If the big picture in memory is larger than the display window, you must 
respecify the modulos. The modulo must be some value other than O. 

o You must allocate more memory for the larger memory picture. 

Specifying the Modulo 

For a memory picture wider than the display window, you need to respecify the modulo 
so that the correct data words are fetched for each line of the display. As an example, 
assume the display window is the standard 320 pixels wide, so 40 bytes are to be 
displayed on each line. The big picture in memory, however, is exactly twice as wide as 
the display window, or 80 bytes wide. Also, assume that you wish to display the left 
half of the big picture. Figure 3-14 shows the relationship between the big picture and 
the picture to be displayed. 

START 

I 
Width of the Bit-Plane Defined in RAM 

Width of defined 
• screen on which 
bit-plane data is 
to appear 

START+78 

Figure 3-14: Memory Picture Larger than the Display 

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in 
figure 3-15. 
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Data for Line 1: 

Location: START 

Leftmost 
Display Word 

START+2 

Next Word 

START+4 

Next Word 

Screen data fetch stops (DDFSTOP) for 
each horizontal line after the last word 

START+38 

Last Display 
Word 

on the line has been fetched. -------..... 

Figure 3-15: Data Fetch for the First Line When Modulo = 40 

At this point, BPLxPTH and BPLxPTL contain the value START+40. The modulo, 
which is 40, is added to the current value of the pointer so that when it begins the data 
fetch for the next line, it fetches the data that you intend for that line. The data fetch 
for line 2 is shown in figure 3-16. 

Data for Line 2: 

Location: START+80 

Leftmost 
Display Word 

START+82 

Next Word 

START+84 

Next Word 

START+118 

Last Display 
Word 

Figure 3-16: Data Fetch for the Second Line When Modulo = 40 

To display the right half of the big picture, you set up a vertical blanking routine to 
start the bit-plane pointers at location START+40 rather than START with the modulo 
remaining at 40. The data layout is shown in figures 3-17 and 3-18. 
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Data for Line 2: 

Location: START+40 

Leftmost 
Display Word 

START+42 

Next Word 

START+44 

Next Word 

START+78 

Last Display 
Word 

Figure 3-17: Data Layout for First Line-Right Half of Big Picture 

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to 
the pointers so that when they begin the data Cetch Cor the second line, the correct data 
is fetched. 

Data for Line 2: 

Location: START+120 

Leftmost 
Display Word 

START+122 

Next Word 

START+124 

Next Word 

START+158 

Last Display 
Word 

Figure 3-18: Data Layout Cor Second Line-Right HalC of Big Picture 

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low
resolution mode. For a normal-sized display, you Cetch 80 bytes Cor each horizontal line 
instead oC 40. 

Specifying the Data Fetch 

The data-fetch registers specify the beginning and end positions for data placement on 
each horizontal line of the display. You specify data fetch in the same way as shown in 
the section called "Forming a Basic Playfield." 
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Memory Allocation 

For larger memory pictures, you need to allocate more memory. Here is a formula for 
calculating memory requirements in general: 

bytes per line * lines in playfield * # of bit-planes 

Thus, if the wide playfield described in this section is formed from two bit-planes, it 
reqUIres: 

80 * 200 * 2 = 32,000 bytes of memory 

Recall that this is the memory requirement for the playfield alone. You need more 
memory for any sprites, animation, audio, or application programs you are using. 

Selecting the Display Window Starting Position 

The display window starting position is the horizontal and vertical coordinates of the 
upper left-h2l.nd corner of the display window. One register, DIWSTRT, holds both the 
horizontal and vertical coordinates, known as HSTART and VSTART. The eight bits 
allocated to HSTART are assigned to the first 256 positions, counting from the leftmost 
possible position. Thus, you can start the display window at any pixel position within 
this range. . 
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FULL SCREEN AREA 

o 

HSTARTof DISPLAY 
WINDOW occurs in 
this region. 

255 361 

Figure 3-19: Display Window Horizontal Starting Position 

The eight bits allocated to VSTART are assigned to the first 256 positions counting 
down from the top of the display. 

FULL SCREEN AREA 

VST ART of DISPLAY WINOJw 
occurs in this region. 

o 

---'----,1-- 255 
(NTSC) ----t-- 262 

Figure 3-20: Display Window Vertical Starting Position 

Recall that you select the values for the starting position as if the display were in low
resolution, non-interlaced mode. Keep in mind, though, that for interlaced mode the 
display window should be an even number of lines in height to allow for equal-sized odd 
and even fields. 
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To set the display window starting position, write the value for HSTARTinto bits 0 
through 7 and the value for VSTART into bits 8 through 15 of DIWSTRT. 

Selecting the Stopping Position 

The stopping position for the display window is the horizontal and vertical coordinates 
of the lower right-hand corner of the display window. One register, DIWSTOP, contains 
both coordinates, known as HSTOP and VSTOP. 

See the notes in the "Forming a Basic Playfield" section for instructions on setting these 
registers. 

FULL SCREEN AREA 

o 255 

HSTOPof DISPLAY 
WINDOW occurs in 
this region. 

361 

Figure 3-21: Display Window Horizontal Stopping Position 

Select a value that represents the correct position in low-resolution, non-interlaced mode. 
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FULL SCREEN AREA 

~--------------------------------------~o 

----------~--------------------+__128 
VSTOP of DISPLAY 
WINDOW occurs in 
this region. 

(NTSC)------11--262 

Figure 3-22: Display Window Vertical Stopping Position 

To set the display window stopping position, write HSTOP into bits 0 through 7 and 
VSTOP into bits 8 through 15 of DIWSTOP. 

MAXIMUM DISPLAY WINDOW SIZE 

The maximum size of a playfield display is determined by the maximum number of lines 
and the maximum number of columns. Vertically, the restrictions are simple. No data 
can be displayed in the vertical blanking area, which ranges from line 0 through line 19 
(20 lines total). This leaves 242 lines of displayable screen video (interlaced mode dou
bles this to 484). 

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost 
limit to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a 
maximum of 25 words fetched in low-resolution mode. In high-resolution mode the max
imum here is 49 words, because the rightmost limit remains ($D8) and only one word is 
fetched at this limit. However, horizontal blanking actually limits the displayable video 
to 376 low-resolution pixels (23.5 words). In addition, it should be noted that using a 
data-fetch start earlier than ($38) will disable some sprites. 
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Moving (Scrolling) Playfields 

If you want a background display that moves, you can design a play field larger than the 
display window and scroll it. If you are using dual playfields, you can scroll them 
separately. 

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. 
All you need do for vertical scrolling is progressively increase or decrease the starting 
address for the bit-plane pointers by the size of a horizontal line in the playfield. This 
has the effect of showing a lower or higher part of the picture each field time. 

In horizontal scrolling the playfield appears to move from right to left or left to right on 
the screen. Horizontal scrolling works differently from vertical scrolling - you must 

. arrange to fetch one more word of data for each display line and delay the display of 
this data. 

For either type of scrolling, resetting of pointers or data-fetch registers can be handled 
by the Copper during the vertical blanking interval. 

VERTICAL SCROLLING 

You can scroll a playfield upward or downward in the window. Each time you display 
the playfield, the bit-plane pointers start at a progressively higher or lower place in the 
big picture in memory. As the value of the pointer increases, more of the lower part of 
the picture is shown and the picture appears to scroll upward. As the value of the 
pointer decreases, more of the upper part is shown and the picture scrolls downward. If 
your picture has 200 vertical lines, each step can be as little as 1/200th of the screen. In 
interlaced mode each step could be 1/400th of the screen if clever manipulation of the 
pointers is used, but it is recommended that scrolling be done two lines at a time to 
maintain the odd/even field relationship. 
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Bit-Plane 
Pointer 

Start 
Address 

. ........................................ 

As the value of the bit-plane 
pointer increases, more of 
the lower part of the 
picture is shown. 

As it decreases, more of 
the upper part is shown . 

Figure 3-23: Vertical Scrolling 

To set up a play field for vertical scrolling, you need to form bit-planes tall enough to 
allow for the amount of scrolling you want, write software to calculate the bit-plane 
pointers for the scrolling you want, and allow for the Copper to use the resultant 
pointers. 

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, 
before each field is displayed, the bit-plane pointers have to increase by enough to ensure 
that the pointers begin one line lower each time. For a normal-sized, low-resolution 
display in which the modulo is 0, the pointers would be incremented by 40 bytes each 
time. 

HORIZONTAL SCROLLING 

You can scroll playfields horizontally from left to right or right to left on the screen. 
You control the speed of scrolling by specifying the amount of delay in pixels. Delay 
means that an extra word of data is fetched but not immediately displayed. The extra 
word is placed just to the left of the window's leftmost edge and before normal data 
fetch. As the display shifts to the right,the bits in this extra word appear on-screen at 
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the left-hand side of the window as bits on the right-hand side disappear off-screen. For 
each pixel of delay, the on-screen data shifts one pixel to the right each display field. 
The greater the delay, the greater the speed of scrolling. You can have up to 15 pixels 
of delay. In high-resolution mode, scrolling is in increments of 2 pixels. Figure 3-24 
shows how the delay and extra data fetch combine to cause the scrolling effect. 

0-15 bits of 
delay will cause 
the system to 

show the 
early-fetched 

word. 
Background Color 

''''--Data Fetch 21 Words---.I 

• ..---Display Window --~ 

Display position in example 
is shown with D-bits of delay. 

As delay is added, 
on screen display 

shifts this 
direction. 

This data is 
displayed if 
scroll = 0 

16 Bits .... --320 Bits (20 words)---I~ 
(1 word)~=::::!+-+!::~ ________ +-____ .... 

o 

-

Figure 3-24: Horizontal Scrolling 

This data is 
displayed if 
scroll = 15 
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Note that fetching an extra word for scrolling will disable some sprites. 

To set up a play field for horizontal scrolling, you need to 

o Define bit-planes wide enough to allow for the scrolling you need. 

o Set the data-fetch registers to correctly place each horizontal line, including the 
extra word, on the screen. 

o Set the delay bits. 

o Set the modulo so that the bit-plane pointers begin at the correct word for each 
line. 

o Write Copper instructions to handle the changes during the vertical blanking 
interval. 

Specifying Data Fetch in Horizontal Scrolling 

The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is 
desired, then the data fetch must start one word sooner (DDFSTRT = $0030). Inciden
tally, this will disable sprite 7. DDFSTOP remains unchanged. Remember that the set-
tings of the data-fetch registers affect both playfields. 

Specifying the Modulo in Horizontal Scrolling 

As always, the modulo is two counts less than the difference between the address of the 
next word you want to fetch and the address of the last word that was fetched. As an 
example for horizontal scrolling, let us assume a 40-byte display in an 80-byte "big pic
ture." Because horizontal scrolling requires a data fetch of two extra bytes, the data for 
each line will be 42 bytes long. 
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START START+38 START+78 

DISPLAY 
WINDOW 
Width 

Memory Picture Width ~ 

Figure 3-25: Memory Picture Larger Than the Display Window 

Data for Line 1: 

Location: START 

Leftmost 
Display Word' 

START+2 

Next Word 

START+4 

Next Word 

Figure 3-26: Data for Line 1 - Horizontal Scrolling 

START+40 

Last Display 
Word 

At this point, the bit-plane pointers contain the value START+42. Adding the modulo 
of 38 gives the correct starting point for the. next line. 

Data for Line 2: 

Location: START+80 

Leftmost 
Display Word 

START+82 

Next Word 

START+84 

Next Word 

Figure 3-27: Data. for Line 2-Horizontal Scrolling 

START+120 

Last Display 
Word 

In the BPLxMOD registers you set the modulo for each bit-plane used. 

Playfield Hardware 77 



Specifying Amount of Delay 

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCONI. You 
set the delay separately for each playfield; bits 3-0 for playfield 1 (bit-planes 1, 3, and 5) 
and bits 7-4 for play field 2 (bit-planes 2, 4, and 6). 

NOTE: Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to 
the same value if you are using only one playfield. 

The following example sets the horizontal scroll delay to 7 for both play fields. 

BPLCONI EQU $DFFI02 ;Horizontal scroll register 

MOVE.W #$77,BPLCONI 

SUMMARY 

The steps for defining a scrolled play field are the same as those for defining the basic 
play field, except for the following steps: 

o Defining the data fetch. Fetch one extra word per horizontal line and start it 
16 pixels before the normal (unscrolled) data-fetch start. 

o Defining the modulo. The modulo is two counts greater than when there is 
no scrolling. 

These steps are added: 

o For vertical scrolling, reset the bit-plane pointers for the amount of the 
scrolling increment. Reset BPLxPTH and BPLxPTL during the vertical 
blanking interval. 

o For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCONI for 0 
to 15 bits of delay. 
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Advanced Topics 

This section describes features that are used less often or are optional. 

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS 

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows 
how play fields can be given different video display priorities relative to the sprites and 
how playfields can collide with (overlap) the sprites or each other. 

HOLD-AND-MODIFY MODE 

This is a special mode that allows you to produce up to 4,096 colors on the screen at the 
same time. Normally, as each value formed by the combination of bit-planes is selected, 
the data contained in the selected color register is loaded into the color output circuit for 
the pixel being written on the screen. Therefore, each pixel is colored by the contents of 
the selected color register. 

In hold-and-modify mode, however, the value in the color output circuitry is held, and 
one of the three components of the color (red, green, or blue) is modified by bits coming 
from certain preselected bit-planes. After modification, the pixel is written to the screen. 

The hold-and-modify mode allows very fine gradients of color or shading to be produced 
on the screen. For example, you might draw a set of 16 vases, each a different color, 
using all 16 colors in the color palette. Then, for each vase, you use hold-and-modify to 
very finely shade or highlight or add a completely different color to each of the vases. 
Note that a particular hold-and-modify pixel can only change one of the three color 
values at a time. Thus, the effect has a limited control. 

In hold and modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify 
the way bits from planes 1 - 4 are treated, as follows: 

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal 
color selection procedure is followed. Thus, the bit combinations from planes 
4 - 1, in that order of significance, are used to choose one of 16 color registers 
(registers 0- 15). 

If only five bit-planes are used, the data from the sixth plane is automatically 
supplied with the value as 0. 
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o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of 
this pixel is duplicated and then modified. The bit-combinations from planes 
4 - 1 are used to replace the four "blue" bits in the corresponding color register. 

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of 
this pixel is duplicated and then modified. The bit-combinations from planes 
4 - 1 are used to replace the four "red" bits. 

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of 
this pixel is duplicated and then modified. The bit-combinations from planes 
4 - 1 are used to replace the four "green" bits. 

Using hold-and-modify mode, it is possible to get by with defining only one color regis
ter, which is COLORO, the color of the background. You treat the entire screen as a 
modification of that original color, according to the scheme above. 

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in 
BPLCONO must be set for hold-and-modify mode to be active: 

oBit HOMOD, bit 11, is 1. 

oBit DBLPF, bit 10, is ° (single-play field mode specified). 

o Bit HIRES, bit 15, is ° (low-resolution mode specified). 

oBits BPU2, BPU1, and BPUO - bits 14, 13, and 12, are 101 or 110 (five or six 
bit-planes active). 

The following example code generates a six-bit-plane display with hold-and-modify mode 
turned on. All 32 color registers are loaded with black to prove that the colors are being 
generated by hold-and-modify. The equates are the usual and are not repeated here. 

; First, set up the control registers. 

LEA CUSTOM,AO 
MOVE.W #$6AOO,BPLCONO(AO) 
MOVE.W #0,BPLCON1(AO) 
MOVE.W #0,BPL1MOD(AO) 
MOVE.W #0,BPL2MOD(AO) 
MOVE.W #$0038,DDFSTRT(AO) 
MOVE.W #$OODO,DDFSTOP(AO) 
MOVE.W #$2C81,DIWSTRT(AO) 
MOVE.W #$F4C1,DIWSTOP(AO) 
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;Point AO at custom chips 
;Six bit-planes, hold-and-modify mode 
;Horizontal scroll = 0 
;Modulo for odd bit-planes = 0 
;Ditto for even bit-planes 
;Set data-fetch start 
;Set data-fetch stop 
;Set display window start 
;Set display window stop 



; Set all color registers = black to prove that hold-and-modiJy mode is working. 

MOVE.W #32,DO 
LEA CUSTOM+COLOROO,A1 

CREGLOOP: 

. , 

MOVE.W #$OOOO,(A1)+ 
SUBQ.W #l,DO 
BNE CREGLOOP 

;Initialize counter 
;Point Al at first color register 

; Write black to a color register 
;Decrement counter 
;Loop until all color registers set 

; Fill six bit-planes with an easily recognizable pattern. 

MOVE.W #2000,DO 
MOVE.L #$21000,A1 
MOVE.L #$23000,A2 
MOVE.L #$25000,A3 
MOVE.L #$27000,A4 
MOVE.L #$29000,A5 
MOVE.L #$2BOOO,A6 

FPLLOOP: 

, 

MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 
SUBQ.W 
BNE 

#$55555555,(Al )+ 
#$33333333,(A2)+ 
#$OFOFOFOF ,(A3)+ 
#$OOFFOOFF ,(A4)+ 
#$FFFFFFFF ,(A5)+ 
#$OOOOOOOO,(A6)+ 
#l,DO 
FPLLOOP 

j Set up a Copper list at $20000. 

CLOOP: 

MOVE.L 
LEA 
MOVE.L 
CMPI.L 
BNE 

#$20000,A1 
COPPERL,A2 
(A2),(Al)+ 
#$FFFFFFFE,(A2)+ 
CLOOP 

; Point Copper at Copper list. 

MOVE.L #$20000,COPILCH(AO) 
MOVE.W COPJMPl(AO),DO 

; Start DMA. 

MOVE.W #$8380,DMACON(AO 

;2000 longwords per bit-plane 
;Point Al at bit-plane 1 
;Point A2 atbit-plane 2 
;Point A3 at bit-plane 3 
;Point A4 at bit-plane 4 
;Point A5 at bit-plane 5 
jPoint A6 at bit-plane 6 

jFill bit-plane 1 with $55555555 
;Fill bit-plane 2 with $33333333 
jFili bit-plane 3 with $OFOFOFOF 
;Fill bit-plane 4 with $OOFFOOFF 
;Fill bit-plane 5 with $FFFFFFFF 
jFill bit-plane 6 with $00000000 
jDecrement counter 
jLoop until all bit-planes are Jull 

jPoint Al at Copper list destination 
jPoint A2 at Copper list image 
jMove a long word 
jCheck Jor end oJ Copper list 
jLoop until entire Copper list moved 

jLoad Copper jump register 
jForce load into Copper P.C. 

jEnable bit-plane and Copper DMA 
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BRA ..... next stuff to do ..... 
, 
; Copper list for six bit-planes. Bit-plane 1 is at $21000; 2 is at $23000; 
; 3 is at $25000; -I is at $27000; 5 is at $29000; 6 is at $2BOOO. 

COPPERL: 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$OOEO,$0002 
$OOE2,$1000 
$OOE4,$0002 
$OOE6,$3000 
$OOE8,$0002 
$OOEA,$5000 
$OOEC,$0002 
$OOEE,$7000 
$OOFO,$0002 
$OOF2,$9000 
$OOF4,$0002 
$OOF6,$BOOO 
$FFFF ,$FFFE 

jBit-plane 1 pointer = $21000 

jBit-plane 2 pointer = $23000 

jBit-plane 3 pointer = $25000 

jBit-plane -I pointer = $27000 

jBit-plane 5 pointer = $29000 

jBit-plane 6 pointer = $2BOOO 

j Wait for the impossible, i.e., quit 

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLA YFIELDS 

The graphics library provides the ability to split the screen into several "ViewPorts", 
each with its own colors and resolutions. See the Amiga ROM Kernel Manual for more 
information. 

USING AN EXTERNAL VIDEO SOURCE 

An optional board that provides genlock is available for the Amiga. Genlock allows you 
to bring in your graphics display from an external video source (such as a VCR, camera, 
or laser disk player). When you use genlock, the background color is replaced by the 
display from this external video source. For more information, see the instructions fur
nished with the optional board. 
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SUMMARY OF PLAYFIELD REGISTERS 

This section summarizes the registers used in this chapter and the meaning of their bit 
settings. The color registers are summarized in the next section. See appendix A for a 
summary of all registers. 

BPLCONO - Bit Plane Control 

NOTE: Bits in this register cannot be independently set. 

Bit 0 - un used 

Bit 1 - ERSY (external synchronization enable) 
1 = External synchronization enabled 
o = External synchronization disabled 

Bit 2 - LACE (interlace enable) 
1 = interlaced mode enabled 
0= non-interlaced mode enabled 

Bit 3 - LPEN (light pen enable) 

Bits 4-7 not used (make 0) 

Bit 8 - GAUD (genlock audio enable) 
1 = Genlock audio enabled 
o = Genlock audio disabled 

Bit 9 - COLOR_ON (color enable) 
1 = composite video color-burst enabled 
0= composite video color-burst disabled 

Bit 10 - DBLPF (double-play field enable) 
1 = dual play fields enabled 
o = single play field enabled 

Bit 11 - HOMOD (hold-and-modify enable) 
1 = hold-and-modify enabled 
o = hold-and-modify disabled 

Bits 14,13,12 - BPU2, BPU1, BPUO 
Number of bit-planes used. 
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000 = only a background color 
001 = 1 bit-plane, PLANE 1 
010 = 2 bit-planes, PLANES 1 and 2 
011 = 3 bit-planes, PLANES 1- 3 
100 = 4 bit-planes, PLANES 1 - 4 
101 = 5 bit-planes, PLANES 1 - 5 
110 = 6 bit-planes, PLANES 1 - 6 
111 not used 

Bit 15 - HIRES (high-resolution enable) 
1 = high-resolution mode 
o = low-resolution mode 

BPLCONl - Bit-plane Control 

Bits 3-0 - PF1H(3:-0) 
Playfield 1 delay 

Bits 7-4 - PF2H(3-0) 
Playfield 2 delay 

Bits 15-8 not used 

BPLCON2 - Bit-plane Control 

Bit 6 - PF2PRI 

1 = Play field 2 has priority 

o = Play field 1 has priority 

Bits 0-5 Play field sprite priority 

Bits 7-15 not used 
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DDFSTRT - Data-fetch Start 
(Beginning position for data fetch) 

Bits 15-8 - not used 

Bits 7-3 • pixel position H8-H4 

Bits 2-0 • not used 

DDFSTOP - Data-fetch Stop 
(Ending position for data fetch) 

Bits 15-8 • not used 

Bits 7·3 • pixel position H8-H4 

Bits 1·0 - not used 

BPLxPTH - Bit-plane Pointer 
(Bit-plane pointer high word, where x is the bit-plane number) 

BPLxPTL - Bit-plane Pointer 
(Bit-plane pointer low word, where x is the bit-plane number) 

DIWSTRT - Display Window Start 
(Starting vertical and horizontal coordinates) 

Bits 15-8· VSTART (V7·VO) 

Bits 7-0 - HSTART (H7-HO) 

DIWSTOP - Display Window Stop 
(Ending vertical and horizontal coordinates) 

Bits 15-8· VSTOP (V7-VO) 

Bits 7-0 - HSTOP (H7-HO) 

BPLIMOD - Bit-plane Modulo 
(Odd-numbered bit-planes, playfield 1) 

BPL2MOD - Bit-plane Modulo 
(Even-numbered bit-planes, playfield 2) 
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Summary of Color Selection 

This section contains summaries of playfield color selection including color register con
tents, example colors, and the differences in color selection in high-resolution and low
resolution modes. 

COLOR REGISTER CONTENTS 

Table 3-10 shows the contents of each color register. All color registers are write-only. 

Table 3-10: Color Register Contents 

Bits Contents 

15 12 (Unused) 

11 ,8 Red 
7 4 Green 
3 0 Blue 

SOME SAMPLE COLOR REGISTER CONTENTS 

Table 3-11 shows a variety of colors and the hexadecimal values to load into the color 
registers for these colors. 
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Table 3-11: Some Register Values and Resulting Colors 

Value Color Value Color 

$FFF White $lFB Light aqua 
$DOO Brick red $6FE Sky blue 
$FOO Red $6CE Light blue 
$F80 Red-orange $OOF Blue 
$F90 Orange $61F Bright blu~ 
$FBO Golden orange $06D Dark blue 
$FDO Cadmium yellow $91F Purple 
$FFO Lemon yellow $CIF Violet 
$BFO Lime green $FIF Magenta 
$8EO Light green $FAC Pink 
$OFO Green $DB9 Tan 
$2CO Dark green $C80 Brown 
$OB1 Forest green $A87 Dark brown 
$OBB Blue green $CCC Light grey 
$ODB Aqua $999 Medium grey 

$000 Black 

COLOR SELECTION IN LOW-RESOLUTION MODE 

Table 3-12 shows playfield color selection in low-resolution mode. If the bit
combinations from the playfields are as shown, the color is taken from the color register 
number indicated. 
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Table 3-12: Low-resolution Color Selection 

Single Playfield Dual Playfields 
Normal Mode Hold-and-modify Mode Color Register 

(Bit-planes 5,4,3,2,1) (Bit-planes 4,3,2,1) Number 
Playfield 1 

Bit-,Elanes 5 23 21 

00000 0000 000 0* 
00001 0001 001 1 
OOOle 0010 010 2 
00011 0011 011 3 
00100 0100 100 4 
00101 0101 101 5 
00110 0100 110 6 
00111 0111 111 7 

Playfield 2 
Bit-,Elanes 624 22 

01000 1000 000 ** 8 
01001 1001 001 9 
01010 1010 010 10 
01011 1011 011 11 
01100 1100 100 12 
01101 1101 101 13 
01110 1110 110 14 
01111 1111 111 15 
10000 I I 16 
10001 I I 17 
10010 I I 18 
10011 I I 19 
10100 NOT NOT 20 
10101 USED USED 21 
10110 IN IN 22 
10111 THIS THIS 23 
11000 MODE MODE 24 
11001 I I 25 
11010 I I 26 
11011 I I 27 
11100 I I 28 
11101 I I 29 
11110 I I 30 
11111 I I 31 

* Color register 0 always defines the background color. 
** Selects "transparent" mode instead of selecting color register 8. 
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COLOR SELECTION IN HOLD-AND-MODIFY MODE 

In hold-and-modify mode, the color register contents are changed as shown in table 3-13. 
This mode is in effect only if bit 10 of BPLCONO = 1. 

Table 3-13: Color Selection in Hold-and-modify Mode 

Bit-plane 6 Bit-plane 5 Result 

0 0 Normal operation (use color register itself) 
0 1 Hold green and red B = Bit-plane 4-1 contents 
1 0 Hold green and blue R = Bit-plane 4-1 contents 
1 1 Hold blue and red G = Bit-plane 4-1 contents 

COLOR SELECTION IN HIGH-RESOLUTION MODE 

Table 3-14 shows playfield color selection in high-resolution mode. If the bit
combinations from the playfields are as shown, the color is taken from the color register 
number indicated. 
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Table 3-14: High-resolution Color Selection 

Single Dual Color 
Playfield Playfields Register 

Bit-planes 4,3,2,1 Number 

Playfield 1 
Bit-planes 3,1 

0000 00 * 0** 
0001 01 1 
0010 10 2 
0011 11 3 

0100 I 4 
0101 NOT USED 5 
0110 IN THIS MODE 6 
0111 I 7 

Playfield 2 
Bit-planes 4,2 

1000 00 * 8 
1001 01 g 

1010 10 10 
1011 11 11 

1100 I 12 
1101 NOT USED 13 
1110 IN THIS MODE 14 
1111 I 15 

* Selects "transparent" mode. 
** Color register a always defines the background color. 
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Chapter 4 

SPRITE HARDWARE 

Introduction 

Sprites are hardware objects that are created and moved independently of the playfield 
display and independently of each other. Together with playfields, sprites form the 
graphics display of the Amiga. You can create more complex animation effects by using 
the blitter, which is described in the chapter called "Blitter Hardware." Sprites are pro
duced on-screen by eight special-purpose sprite DMA channels. Basic sprites are 16 pix
els wide and any number of lines high. You can choose from three colors for a sprite's 
pixels, and a pixel may also be transparent, showing any object behind the sprite. For 
larger or more complex objects, or for more color choices, you can combine sprites. 

Sprite Hardware 91 



Sprite DMA channels can be reused several times within the same display field. Thus, 
you are not limited to having only eight sprites on the screen at the same time. 

ABOUT THIS CHAPTER 

This chapter discusses the following topics: 

o Defining the size, shape, color, and screen position of sprites. 

o Displaying and moving sprites. 

o Combining sprites for more complex Images, additional width, or additional 
colors. 

o Reusing a sprite DMA channel multiple times within a display field to create 
more than eight sprites on the screen at one time. 

Forming a Sprite 

To form a sprite, you must first define it and then create a formal data structure in 
memory. You define a sprite by specifying its characteristics: 

o On-screen wid th of up to 16 pixels. 

o Unlimited height. 

o Any shape. 

o A combination of three colors, plus transparent. 

o Any position on the screen. 

'SCREEN POSITION 

A sprite's screen position is defined as a set of X,Y coordinates. Position (0,0), where 
X = 0 and Y = 0, is the upper left-hand corner of the display. You define a sprite's 
location by specifying the coordinates of its upper left-hand pixel. Sprite position is 
always defined as though the display modes were low-resolution and non-interlaced. The 
X,Y coordinate system and definition of a sprite's position are graphically represented in 
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figure 4-1. Notice that because of display overscan, position (0,0) (that is, X = 0, 
Y = 0) is not normally in a viewable region of the screen. 

(0.0)--.......--_____ .....,._ 

I Visible Screen Area 
y 

I---+-X----l~~t -::':.~I 

Figure 4-1: Defining Sprite On-screen Position 

The amount of viewable area is also affected by the size of the playfield display window. 
See the "Playfield Hardware" chapter for more information about overscan and display 
windows. 

Horizontal Position 

A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. 
To be visible, however, an object must be within the boundaries of the playfield display 
window. In addition, the normally usable range of the video screen is from pixel 64 to 
pixel 383 (that is, 320 pixels of usable width). A larger area is actually scanned by the 
video beam but is not usually visible on the screen. 

If you specify an X value for the sprite of less than 64 or an X value outside the display 
window, part or all of the sprite may not appear on the screen. This is sometimes desir
able; such a sprite is said to be "clipped." 

To make a sprite appear, unclipped, in its correct on-screen horizontal position, add 64 
to the X value. For example, to make the upper leftmost pixel of a sprite appear at a 
position 94 pixels from the left edge of the screen, you would perform this calculation: 
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Desired X position 94 
32 off-screen lines +64 

158 

Thus, 158 becomes the X value, which will be written into the data structure. 

Note that the X position represents the location of the very first (leftmost) pixel in the 
full 16-bit-wide sprite. This is always the case, even if the leftmost pixels are specified as 
transparent and do not appear on the screen. If the sprite shown in figure 4-2 were 
located at an X value of 158, the actual image would begin on-screen four pixels later at 
162. The first four pixels in this sprite are transparent and allow the background to 
show through. 

4 

Figure 4-2: Position of Sprites 

Vertical Position 

You can select any position from line 0 to line 262 for the topmost edge of the sprite. 
The normal usable range of the video screen, however, is from line 44 through line 243. 
This allows the normal display height of 200 lines in non-interlaced mode. If you specify 
a vertical position (Y value) of less than 44, the top edge of the sprite may not appear 
on screen. 

To make a sprite appear in its correct on-screen vertical position, add 44 to the desired 
position. For example, to make the upper leftmost pixel appear 25 lines below the top 
edge of the screen, perform this calculation: 
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Desired Y position 25 
44 above-screen lines +44 

69 

Thus, 69 is the Y value you will write into the data structure. 

Clipped Sprites 

As noted above, sprites will be partially or totally clipped if they pass across or beyond 
the boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are 
"normal" for a centered display on a standard video monitor. If you choose other values 
to establish your display window, your sprites will be clipped accordingly. 

SIZE OF SPRITES 

Sprites are 16 pixels wide and can be almost any height you wish - as short as one line 
or taller than the screen. You would probably move a very tall sprite vertically to 
display a portion of it at a time. 

Sprite size is based on a pixel that is 1/320th of a normal screen's width and 1/200th of 
a normal screen's height. This pixel size corresponds to the low-resolution and non
interlaced modes of the normal full-size playfield. Sprites, however, are independent of 
play field modes of display, so changing the resolution or interlace mode of the playfield 
has no effect on the size or resolution of a sprite. 

SHAPE OF SPRITES 

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's 
shape by specifying which pixels actually appear in each of the sprite's locations. For 
example, figures 4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first 
figure shows only the spaceship as you might sketch it out on graph paper. The second 
figure shows the spaceship within the 16-pixel width. The Os around the spaceship mark 
the part of the sprite not covered by the spaceship and transparent when displayed. 
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Figure 4-3: Shape of Spaceship 

ooooxxoooooooooo 
ooxxxxxxoooooooo 
xxxxxxxxxxoooooo 
xxxxxxxxxxoooooo 
oooxxxxooooooooo 

Figure 4-4: Sprite with Spaceship Shape Defined 

In this example, the widest part of the shape is ten pixels and the shape is shifted to the 
left of the sprite. Whenever the shape is narrower than the sprite, you can control 
which part of the sprite is used to define the shape. This particular shape could also 
start at any of the pixels from 2-7 instead of pixel!. 

SPRITE COLOR 

When sprites are used individually (that is, not "attached" as described under 
"Attached Sprites" later), each pixel can be one of three colors or transparent. Colors 
are selected in much the same manner as playfield colors. Figure 4-5 shows how the 
color of each pixel in a sprite is determined. 
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Transparent 

High-order word of sprite data line 

Low-order word of sprite data line 

Forms a binary 
code, used as 

the color choice 
from a group of 
color registers. 

Figure 4-5: Sprite Color Definition 

The Os and Is in the two data words that define each line of a sprite in the data struc
ture form a binary number. This binary number points to one of the four color registers 
assigned to that particular sprite DMA channel. The eight sprites use system color 
registers 16 - 31. For purposes of color selection, the eight sprites are organized into 
pairs and each pair uses four of the color registers as shown in figure 4-6. Note that the 
color value of the first register in each group of four registers is ignored by sprites. 
When the sprite bits select this register, the "transparent" value is used. 
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Codes 01, 10, or 11 
select one of three 
possible registers 
from the normal 
color register group, 
from which the 
actual color data 
is taken. 

Sprite a or 1 '{ 00 

01 
10 
11 

Sprite 2 or 3 '{ 00 

01 
10 
11 

Sprite 4 or 5 '{ 
00 
01 
10 
11 

Sprite 6 or 7 '{ 00 

01 
10 
11 

"V 

Color Register Set 

Unused 

Unused 

Unused 

Unused 

Figure 4-6: Color Register Assignments 

16 

~ 
~YieldS 
~ Transparent 

V 
28 

31 

If you require certain colors in a sprite, you will want to load the sprite's color registers 
with those colors. The "Playfield Hardware" chapter contains instructions on loading 
color registers. 

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes 
transparent and shows the color of any other sprite or playfield that has lower video 
priority. An object with low priority appears "behind" an object with higher priority_ 
Each sprite has a fixed video priority with respect to all the other sprites. You can vary 
the priority between sprites and playfields. (See chapter 7, "System Control Hardware," 
for more information about sprite priority.) 

DESIGNING A SPRITE 

For design purposes, it is convenient to layout the sprite on paper first. You can show 
the desired colors as numbers from 0 to 3. For example, the spaceship shown above 
might look like this: 
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0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 

The next step is to convert the numbers 0-3 into binary numbers, which will be used to 
build the color descriptor words of the sprite data structure. The section below shows 
how to do this. 

BUILDING THE DATA STRUCTURE 

After defining the sprite, you need to build its data structure, which is a series of 16-bit 
words in a contiguous memory area. Some of the words contain position and control 
information and some contain color descriptions. To create a sprite's data structure, you 
need to: 

o Write the horizontal and vertical position of the sprite into the first control 
word. 

o Write the vertical stopping position into the second control word. 

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into 
binary color numbers. Use the binary values to build color descriptor (data) 
words and write these words into the data structure. 

o Write the control words that indicate the end of the sprite data structure. 

Table 4-1 shows a sprite data structure with the memory location and function of each 
word: 
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Table 4-1: Sprite Data Structure 

Memory 
Location 

N 
N+1 
N+2 
N+3 
N+4 
N+5 

16-bit Word 

Sprite control word 1 
Sprite control word 2 
Color descriptor low word 
Color descriptor high word 
Color descriptor low word 
Color descriptor high word 

End-of-data words 

Function 

Vertical and horizontal start position 
Vertical stop position 
Color bits for line 1 
Color bits for line 1 
Color bits for line 2 
Color bits for line 2 

Two words indicating 
the next usage of this sprite 

All memory addresses for sprites are word addresses. You will need enough contiguous 
memory to provide room for two words for the control information, two words for each 
horizontal line in the sprite, and two end-of-data words. 

Because this data structure must be accessible by the special-purpose chips, you must 
ensure that this data is located within the lowest 512K bytes of the system memory. 

Figure 4-7 shows how the data structure relates to the sprite. 
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..... 1------16 bits-----.... 

Increasing VSTART, HSTART 
addresses t---------------t 

VSTOP, control bits 

Low word of data, line 1 

High word of data, line 1 

Data describing 
central lines of 

this sprite 

Low word of data, last line 

High word of data, last line 

0000000000000000 

000 000 0 0 0 0 0 0 0 0 0 0 

Part 
of a 

screen 
display 

VSTART 

VSTOP 

HSTART 

~: / 

Figure 4-7: Data Structure Layout 

Each group of words defines one 
vertical usage of a sprite. 
Contains starting location and 
physical appearance of this 
sprite image. 

Pairs of words containing 
color information for pixel 
lines. 

Last word pair contains all 
zeros if this sprite processor is 
to be used only once vertically 
in the display frame. 

EACH WORD PAIR 

Low word of pair 

High word of pair 

DESCRIBES ONE VIDEO 
LINE OF THE SPRITE 

Sprite Hardware 101 



Sprite Control Word 1: SPRxPOS 

This word contains the vertical (VSTART) and horizontal (HSTART) starting position 
for the sprite. This is where the topmost line of the sprite will be positioned. 

Bits 15-8 contain the low 8 bits of VSTART 
Bits 7-0 contain the high 8 bits of HSTART 

Sprite Control Word 2: SPRxCTL 

This word contains the vertical stopping position of the sprite on the screen. It also con
tains some data having to do with sprite attachment, which is described later on. 

Bits 15-8 
Bit 7 
Bits 6-3 
Bit 2 
Bit 1 
Bit 0 

SPRxCTL 

The low eight bits of VSTOP 
(Used in attachment) 
Unused (make zero) 
The VSTART high bit 
The VSTOP high bit 
The HSTART low bit 

The value (VSTOP - VSTART + 1) defines how many lines high the sprite will be. 

Sprite Color Descriptor Words 

It takes two color descriptor words to describe each horizontal line of a sprite; the high
order word and the low-order word. To calculate how many color descriptor words you 
need, mUltiply the height of the sprite in lines by 2. The bits in the high-order color 
descriptor word contribute the leftmost digit of the binary color selector number for each 
pixel; the low-order word contributes the rightmost digit. 

To form the color descriptor words, you first need to form a picture of the sprite, show
ing the color of each pixel as a number from 0 - 3. Each number represents one of the 
colors in the sprite's color registers. For example, here is the spaceship sprite again: 
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0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 

Next, you translate each of the numbers in this picture into a binary number. The first 
line in binary is shown below. The binary numbers are represented vertically with the 
low digit in the top line and the high digit right below it. This is how the two color 
descriptor words for each sprite line are written in memory. 

0000100110010000 
0000011111100000 

The first line above becomes the color descriptor high word for line 1 of the sprite. The 
second line becomes the color descriptor low word. In this fashion, you translate each 
line in the sprite into binary Os and Is. 

Each of the binary numbers formed by the combination of the two data words for each 
line refers to a specific color register in that particular sprite channel's segment of the 
color table. Sprite channel 0, for example, takes its colors from registers 17 - 19. The 
binary numbers corresponding to the color registers for sprite DMA channel 0 are shown 
in table 4-2. 

Table 4-2: Sprite Color Registers 

Binary Number Color Register Number 

00 
01 
10 
11 

Transparent 
17 
18 
19 

Recall that binary 00 always means transparent and never refers to a color. 
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End-or-data Words 

When the vertical position of the beam counter is equal to the VSTOP value in the 
sprite control words, the next two words fetched from the sprite data structure are writ
ten into the sprite control registers instead of being sent to the color registers. These 
two words are interpreted by the hardware in the same manner as the original words 
that were first loaded into the control registers. If the VSTART value contained in 
these words is lower than the current beam position, this sprite will not be reused in this 
display field. For consistency, the value 0 should be used for both words when ending 
the usage of a sprite. Sprite reuse is discussed later. 

The following data structure is for the spaceship sprite. It will be located at V = 65 
and H = 128 on the screen. 

SPRITE: 

DC.W 
DC.W 
DC.'V 
DC.W 
DC.W 
DC.W 
DC.W 

$6D60,$7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$lFF8 
$13C8,$OFFO 
$0990,$07EO 
$0000,$0000 

Displaying a Sprite 

;VSTART, lISTART, VSTOP 
;First pair of descriptor words 

;End of sprite data 

After building the data structure, you need to tell the system to display it. This section 
describes the display of sprites in "automatic" mode. In this mode, once the sprite DMA 
channel begins to retrieve and display the data, the display continues until the VSTOP 
position is reached. Manual mode is described later on in this chapter. 

The following steps are used in displaying the sprite: 

1. Decide which of the eight sprite DMA channels to use. 

2. Set the sprite pointers to tell the system where to find the sprite data. 

3. Turn on sprite direct memory access if it is not already on. 
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4. For each subsequent display field, during the vertical blanking interval, rewrite 
the sprite pointers. 

CAUTION 

If sprite DMA is turned off while a sprite is being displayed (that is, after 
VSTART but before VSTOP), the system will continue to display the line of 
sprite data that was most recently fetched. This causes a vertical bar to 
appear on the screen. It is recommended that sprite DMA be turned off only 
during vertical blanking or during some portion of the display where you are 
sure that no sprite is being displayed. 

SELECTING A DMA CHANNEL AND SETTING THE POINTERS 

In deciding which DMA channel to use, you should take into consideration the colors 
assigned to the sprite and the sprite's video priority. 

The sprite DMA channel uses two pointers to read in sprite data and control words. 
During the vertical blanking interval before the first display of the sprite, you need to 
write the sprite's memory address into these pointers. The pointers for each sprite are 
called SPRxPTH and SPRxPTL, where "x" is the number of the sprite DMA channel. 
SPRxPTH points to the high three bits of the memory address of the first word in the 
sprite and SPRxPTL points to the low fifteen bits. As usual, you can write a long word 
into SPRxPTH. 

In the following example the processor initializes the data pointers for sprite O. Nor
mally, this is done by the Copper. The sprite is at address $20000. 

SPROPTH EQU 
SPROPTL EQU 

MOVE.L 

$DFF120 
$DFF122 

#$20000,SPROPTH ; Write $20000 to sprite 0 pointer 

These pointers are dynamic; they are incremented by the sprite DMA channel to point 
first to the control words, then to the data words, and finally to the end-of-data words. 
After reading in the sprite control information and storing it in other registers, they 
proceed to read in the color descriptor words. The color descriptor words are stored in 
sprite data registers, which are used by the sprite DMA channel to display the data on 
screen. For more information about how the sprite DMA channels handle the display, 
see the "Hardware Details" section below. 
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RESETTING THE ADDRESS POINTERS 

For one single display field, the system will automatically read the data structure and 
produce the sprite on-screen in the colors that are specified in the sprite's color registers. 
If you want the sprite to be displayed in subsequent display fields, you must rewrite the 
contents of the sprite pointers during each vertical blanking interval. This is necessary 
because during the display field, the pointers are incremented to point to the data which 
is being fetched as the screen display progresses. 

The rewrite becomes part of the vertical blanking routine, which can be handled by 
instructions in the Copper lists. 

SPRITE DISPLAY EXAMPLE 

This example displays the ~paceship sprite at location V = 65, H = 128. The equates 
are the usual, so they're not repeated here. 

; First, we set up a single bit-plane. 

LEA CUSTOM,AO 
MOVE.W #$1200,BPLCONO(AO) 
MOVE.W #$OOOO,BPLIMOD(AO) 
MOVE.W #$0000,BPLCON1(AO) 
MOVE.W #$0024,BPLCON2(AO) 
MOVE.W #$0038,DDFSTRT(AO) 
MOVE.W #$OODO,DDFSTOP(AO) 
MOVE. W #$2C81,DIWSTRT(AO) 
MOVE.W #$F4Cl,DIWSTOP(AO) 

j Set up color registers. 

, 

MOVE.W #$0008,COLOROO(AO) 
MOVE.\V #$OOOO,COLOR01(AO) 
MOVE.W #$OFFO,COLOR17(AO) 
MOVE.W #$OOFF ,COLOR18(AO) 
MOVE.W #$OFOF,COLOR19(AO) 

; Move Copper list to $20000. 

MOVE.L #$20000,A1 
LEA COPPERL,A2 
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jPoint AO at custom chips 
i1 bit-plane color is on 
iModulo = 0 
iHorizontal scroll value = 0 
iSprites have priority over playfields 
iSet data-fetch start 
iSet data-fetch stop 
iSet display window start 
iSet display window stop 

iBackground color = dark blue 
iForeground color = black 
i Color 17 = yellow 
iColor 18 = cyan 
iColor 19 = magenta 

iPoint A1 at Copper list destination 
iPoint A2 at Copper list source 



CLOOP: 

, 

MOVE.L 
CMP.L 
BNE 

(A2),(AI)+ 
#$FFFFFFFE,( A2)+ 
CLOOP 

j Move sprite to $25000. 

MOVE.L 
LEA 

SPRLOOP: 

, 

MOVE.L 
CMP.L 
BNE 

#$25000,AI 
SPRITE,A2 

(A2),(AI)+ 
#$00000000,(A2)+ 
SPRLOOP 

;Move a long word 
; Check for end of list 
;Loop until entire list is moved 

;Point Al at sprite destination 
;Point A2 at sprite source 

;Move a long word 
; Check for end of sprite 
;Loop until entire sprite is moved 

j Now we write a dummy sprite to $80000, since all eight sprites are activated 
j at the same time and we're only going to use one. The remaining sprites 
j will point to this dummy sprite data. 

MOVE.L #$00000000,$30000 ; Write it 
, 
; Point Copper at Copper list. 

MOVE.L #$20000,CUSTOM+COPILC 
, 
; Fill bit-plane with $FFFFFFFF. 

MOVE.L #$2IOOO,AI 
MOVE.W #2000,DO 

FLOOP: 
MOVE.L 
SUBQ.W 
BNE 

j Start DMA. 

#$FFFFFFFF ,(AI)+ 
#I,DO 
FLOOP 

MOVE.W CUSTOM+COPJMPI,DO 

;Point Al at bit-plane 
;2000 long words = 8000 bytes 

;Move a long word of$FFFFFFFF 
jDecrement counter 
;Loop until bit-plane is full 

jForce load into Copper 
j program counter 

MOVE.W #$83AO,(CUSTOM+DMACON) ;Bit-plane, Copper, and sprite DMA 
BRA ; .... next things to do ... 

; This is a Copper list for one bit-plane, and 8 sprites. The bit-plane lives 
; at $21000. Sprite 0 lives at $25000; all others live at $80000 (the dummy sprite). 
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· , 
COPPERL: 

DC.W $00EO,$0002 ;Bit plane 1 pointer = $21000 

DC.W $00E2,$10oo 
DC.W $0120,$0002 ;Sprite 0 pointer = $25000 

DC.W $0122,$5000 
DC.W $0124,$0003 ;Sprite 1 pointer = $30000 
DC.W $0126,$0000 
DC.W $0128,$0003 jSprite 2 pointer = $30000 
DC.W $012A,$OOOO 
DC.W $012C,$0003 ;Sprite 3 pointer = $30000 

DC.W $012E,$0000 
DC.W $0130,$0003 jSprite -I pointer = $30000 
DC.W $0132,$0000 
DC.W $0134,$0003 jSprite 5 pointer = $30000 
DC.W $0136,$0000 
DC.W $0138,$0003 jSprite 6 pointer = $30000 
DC.W $013A,$0000 
DC.W $0130,$0003 jSprite 7 pointer = $30000 
DO.W $013E,$0000 
DC.W $FFFF ,$FFFE ;End of Copper list 

, 
; Sprite data for spaceship sprite. It appears on the screen at V 65 and H-128. 

SPRITE: 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$6D60,$72oo 
$Og90,$07EO 
$13C8,$OFFO 
$23C4,$lFF8 
$1308,$OFFO 
$Og90,$07EO 
$0000,$0000 

Moving a Sprite 

; VSTART, HSTART, VSTOP 
jFirst pair of descriptor words 

;End of sprite data 

A sprite generated in automatic mode can be moved by specifying a different position in 
the data structure. For each display field, the data is reread and the sprite redrawn. 
Therefore, if you change the position data before the sprite is redrawn, it will appear in 
a new position and will seem to be moving. 
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You must take care that you are not moving the sprite (that is, changing control word 
data) at the same time that the system is using tha.t data to find out where to display 
the object. If you do so, the system might find the start position for one field and the 
stop position for the following field as it retrieves data for display. This would cause a 
"glitch" and would mess up the screen. Therefore, you should change the content of the 
control words only during a time when the system is not trying to read them. Usually, 
the vertical blanking period is a safe time, so moving the sprites becomes part of the 
vertical blanking tasks and is handled by the Copper as shown in the example below . 

.As sprites move about on the screen, they can collide with each other or with either of 
the two playfields. You can use the hardware to detect these collisions and exploit this 
capability for special effects. In addition, you can use collision detection to keep a mov
ing object within specified on-screen boundaries. Collision is described in chapter 7, 
"System Control Hardware." 

In this example of moving a sprite, the spaceship is bounced around on the screen, 
changing direction whenever it reaches an edge. 

The sprite position data, containing VSTART and HSTART, lives in memory at $25000. 
VSTOP is located at $25002. You write to these locations to move the sprite. Once 
during each frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. 
Then a new VSTOP is calculated, which will be the new VSTART + 6. 

, 

MOVE.B #151,DO 
MOVE.B #194,Dl 
MOVE.B #64,D2 
MOVE.B #44,D3 
MOVE.B #1,D4 
MOVE.B #1,D5 

jlnitialize horizontal count 
jlnitialize vertical count 
jlnitialize horizontal position 
jlnitialize vertical position 
jlnitialize horizontal increment value 
jlnitialize vertical increment value 

jHere we wait for the vertical blanking bit in INTREQR to turn on. 
j This ensures a glitch-free display. 

VLOOP: 
MOVE.W CUSTOM+INTREQR,D6 
AND.W #$0020,D6 

jRead interrupt request word 
jMask off all but vertical blank bit 
jLoop until bit is a 1 BEQ VLOOP 

MOVE.W #$OO20,CUSTOM+INTREQ ; Vertical bit is on, so reset it 

ADD.B 
SUBQ.B 
BNE 
MOVE.B 
EOR.B 

D4,D2 
#,DO 
Ll 
#151,DO 
#$FE,D4 

jlncrement horizontal value 
;Decrement horizontal counter 

;Count exhausted, reset to 151 
;Negate the increment value 
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Ll: 

L2.: 

MOVE.B 
ADD.B 
SUBQ.B 
BNE 
MOVE.B 
EOR.B 
MOVE.B 
MOVE.B 
ADD.B 
MOVE.B 
BRA 

D2,$25001 
D5,D3 
#l,Dl 
L2 
#194,Dl 
#$FE,D5 
D3,$25000 
D3,D6 
#6,D6 
D6,$25002 
VLOOP 

; Write new HSTART value to sprite 
;Increment vertical value 
;Decrement vertical counter 

;Oount exhausted, reset to 19-1 
;Negate the increment value 
; Write new VSTART value to sprite 
;Must now calculate new VSTOP 
;VSTOP always VSTART+6 for spaceship 
; Write new VSTOP to sprite 
jLoop forever 

Creating Additional Sprites 

To use additional sprites, you must create a data structure for each one and arrange the 
display as shown in the previous section, naming the pointers SPRIPTH and SPRIPTL 
for sprite DMA channel 1, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so 
on. 

Note that when you enable sprite DMA for one sprIte, you enable DMA for all the 
sprites and place them all in automatic mode. Thus, you do not need to repeat this step 
when using additional sprite DMA channels. Once the sprite DMA channels are enabled, 
all eight sprite pointers must be initialized to either a real sprite or a safe null sprite. An 
uninitialized sprite could cause spurious sprite video to appear. 

Also, recall that each pair of sprites takes its color from different color registers, as 
shown in table 4-3. 
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Table 4-3: Color Registers for Sprite Pairs 

Sprite Numbers Color Registers 

o and 1 
2 and 3 
4 and 5 
6 and 7 

17 - 19 
21- 23 
25 - 27 
29 - 31 



When you have more than one sprite on the screen, you may need to take into con
sideration their relative video priority, that is, which sprite appears in front of or behind 
another. Each sprite has a fixed video priority with respect to all the others. The 
lowest numbered sprite has the highest priority and appears in front of all other sprites; 
the highest numbered sprite has the lowest priority. This is illustrated in figure 4-8. 

I 7 
I 6 

I 5 -J 4 -I 3 ~ 
I 2 

~ 

J 1 -
0 -
~ 

Figure 4-8: Sprite Priority 

Reusing Sprite DMA Channels 

Each of the eight sprite DMA channels can produce more than one independently con
trollable image. There may be times when you want more than eight objects, or you 
may be left with fewer than eight objects because you have attached some of the sprites 
to produce more colors or larger objects or overlapped some to produce more complex 
images. You can reuse each sprite· DMA channel several times within the same display 
field, as shown in figure 4-9. 
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Part 
ofa 

screen 
display 

Each image of this sprite 
may be placed at any 
desired spot, horizontally 
or vertically. However, 
at least one video line 
must separate the bottom 
of one usage of a sprite . 
from the starting point 
of the next usage. 

Figure 4-9: Typical Example of Sprite Reuse 

In single-sprite usage, two all-zero words are placed at the end of the data structure to 
stop the DMA channel from retrieving any more data for that particular sprite during 
that display field. To reuse a DMA channel, you replace this pair of zero words with 
another complete sprite data structure, which describes the reuse of the DMA channel at 
a position lower on the screen than the first use. You place the two all-zero words at the 
end of the data structure that contains the information for all usages of the DMA chan
nel. For example, figure 4-10 shows the data structure that describes the picture above. 

The only restrictions on the re.use of sprites during a single display field is that the bot
tom line of one usage of a sprite must be separated from the top line of the next usage 
by at least one horizontal scan line. This restriction is necessary because only two DMA 
cycles per horizontal scan line are allotted to each of the eight channels. The sprite 
channel needs the time during the blank line to fetch the control word describing the 
next usage of the sprite. 

The following example displays the spaceship sprite and then redisplays it as a different 
object. Only the sprite data list is affected, so only the data list is shown here. How
ever, the sprite looks best with the color registers set as shown in the example. 
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Increasing 
RAM 

Memory 
Addresses 

LEA 
MOVE.W 
MOVE.W 
MOVE.W 

SPRITE: 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

SPRITE DISPLAY LIST -

~Data describing the first vertical 
/ usage of this sprite. 

Data describing the second vertical 
usage of this sprite. Contents of 
vertical start word must be at least 
one video line below actual end of 
preceding usage. 

I ~ End-of-data words ending the 
V usage of this sprite. 

Figure 4-10: Typical Data Structure for Sprite Re-use 

CUSTOM,AO 
#$OFOO,COLOR17(AO) 
#$OFFO,COLOR18(AO) 
#$OFFF ,COLOR19(AO) 

$6D60,$7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$1FF8 
$13C8,$OFFO 
$0990,$07EO 
$8080,$8DOO 
$1818,$0000 
$7E7E,$0000 
$7FFE,$OOOO 
$FFFF ,$2000 
$FFFF ,$2000 
$FFFF ,$3000 
$FFFF ,$3000 
$7FFE,$1800 
$7FFE,$OCOO 

jColor 17 = red 
j Color 18 = yellow 
jColor 19 = white 

jVSTART, HSTART, VSTOP for new sprite 
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DO.W 
DO.W 
DO.W 
DO.W 
DO.W 

$3FFO,$0000 
$OFFO,$OOOO 
$0300,$0000 
$0180,$0000 
$0000,$0000 

Overlapped Sprites 

jEnd of sprite data 

For more complex or larger moving objects, you can overlap sprites. Overlapping simply 
means that the sprites have the same or relatively close screen positions. A relatively 
close screen position can result in an object that is wider than 16 pixels. 

The built-in sprite video priority ensures that one sprite appears to be behind the other 
when sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the 
highest priority and the highest numbered sprite the lowest priority. Therefore, when 
designing displays with overlapped sprites, make sure the "foreground" sprite has a 
lower number than the "background" sprite. In figure 4-11, for example, the cage 
should be generated by a lower-numbered sprite DMA channel than the monkey. 
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Individual sprites 
can be combined 
by simple overlap . 

..... t--"7"'"Built in sprite "Priority" 
displays one sprite 
behind the other 
when overlapped. 

Figure 4-11: Overlapping Sprites (Not Attached) 

You can create a wider sprite display by placing two sprites next to each other. For 
instance, figure 4-12 shows the spaceship sprite and how it can be made twice as large by 
using two sprites placed next to each other. 
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(128,65) 

IWkI 
(128,65) (144,65) 

Sprite 0 Sprite 1 

Figure 4-12: Placing Sprites Next to Each Other 

Attached Sprites 

You can create sprites that have fifteen possible color choices (plus transparent) instead 
of three (plus transparent), by "attaching" two sprites. To create attached sprites, you 
must: 

o Use two channels per sprite, creating two sprites of the same size and located at 
the same position. 

o Set a bit called ATTACH in the second sprite control word. 

The fifteen colors are selected from the full range of color registers available to sprites -
registers 17 through 31. The extra color choices are possible because each pixel contains 
four bits instead of only two as in the normal, unattached sprite. Each sprite in the 
attached pair contributes two bits to the binary color selector number. For example, if 
you are using sprite DMA channels 0 and 1, the high- and low-order color descriptor 
words for line 1 in both data structures are combined into line 1 of the attached object. 

Sprites can be attached in the following combinations: 
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Sprite 1 to sprite 0 
Sprite 3 to sprite 2 
Sprite 5 to sprite 4 
Sprite 7 to sprite 6 

Any or all of these attachments can be active during the same display field. As an 
example, assume that you wish to have more colors in the spaceship sprite and you are 
using sprite DMA channels 0 and 1. There are five colors plus transparent in this sprite. 

0000154444510000 
0001564444651000 
0015676446765100 
0001564444651000 
0000154444510000 

The first line in this sprite requires the four data words shown in table 4-4 to form the 
correct binary color selector numbers. 

Table 4-4: Data Words for First Line of Spaceship Sprite 

Pixel Number 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line 2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 
Line 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 
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The binary numbers 0 through 15 select registers 17 through 31 as shown in table 4-5. 

Table 4-5: Color Registers in Attached Sprites 

Decimal Binary Color Register 
Number Number Number 

0 0000 16 * 
1 0001 17 
2 0010 18 
3 0011 19 
4 0100 20 
5 0101 21 
6 0110 22 
7 0111 23 
8 1000 24 
9 1001 25 

10 1010 26 
11 1011 27 
12 1100 28 
13 1101 29 
14 1110 30 
15 1111 31 

* Unused; yields transparent pixel. 

The highest numbered sprite (number 1, in this example) contributes the highest order 
bits (leftmost) in the binary number. The high-order data word in each sprite contri
butes the leftmost digit. Therefore, the lines above are written to the sprite data struc
tures as follows: 

Line 1 
Line 2 
Line 3 
Line 4 

Sprite 1 high-order word for sprite line 1 
Sprite 1 low-order word for sprite line 1 
Sprite 0 high-order word for sprite line 1 
Sprite 0 low-order word for sprite line 1 
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Attachment is in effect only when the ATTACH bit, bit 7 in sprite control word 2, is set 
to 1 in the data structure for the odd-numbered sprite. So, in this example, you set bit 
7 in sprite control word 2 in the data structure for sprite 1. 

When the sprites are moved, the Copper list must keep them both at exactly the same 
position relative to each other. If they are not kept together on the screen, their pixels 
will change color. Each sprite will revert to three colors plus transparent, but the colors 
may be different than if they were ordinary, unattached sprites. The color selection for 
the lower numbered sprite wili be from color registers 17-19. The color selection for the 
higher numbered sprite will be from color registers 20, 24, and 28. 

The following data structure is for the six-color spaceship made with two attached 
sprites. 

SPRITEO: 

DC.W 
DC.\V 
DC.\V 
DC.\V 
DC.\V 
DC.W 
DC.\V 

SPRITE1: 

DC.W 
DC.\V 
DC.\V 
DC.W 
DC.W 
DC.\V 
DC.W 

Manual Mode 

$6D60,$7200 
$OC30,$0000 
$1818,$0420 
$342C,$OE70 
$1818,$0420 
$OC30,$0000 
$0000,$0000 

$6D60,$7280 
$07EO,$0000 
$OFFO,$OOOO 
$IFF8,$0000 
$OFFO,$OOOO 
$07EO,$OOOO 
$0000,$0000 

jVSTART = 65, HSTART = 128 
jFirst color descriptor word 

jEnd of sprite 0 

;Same as sprite 0 except attach bit on 
jFirst descriptor word for sprite 1 

;End of sprite 1 

It is almost always best to load sprites using the automatic DMA channels. Sometimes, 
however, it is useful to load these registers directly from one of the microprocessors. 
Sprites may be activated "manually" whenever they are not being used by a DMA chan
nel. The same sprite that is showing a DMA-controlled icon near the top of the screen 
can also be reloaded manually to show a vertical colored bar near the bottom of the 
screen. Sprites can be activated manually even when the sprite DMA is turned off. 
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You display sprites manually by writing to the sprite data registers SPRxDATB and 
SPRxDATA, in that order. You write to SPRxDATA last because that address "arms" 
the sprite to be output at the next horizontal comparison. The data written will then be 
displayed on every line, at the horizontal position given in the "H" portion of the posi
tion registers SPRxPOS and SPRxCTL. If the data is unchanged, the result will be a 
vertical bar. If the data is reloaded for every line, a complex sprite can be produced. 

The sprite can be terminated ("disarmed") by writing to the SPRxCTL register. If you 
write to the SPRxPOS register, you can manually move the sprite horizontally at any 
time, even during normal sprite usage. 

Sprite Hardware Details 

Sprites are produced by the circuitry shown in figure 4-13. This figure shows in block 
form how a pair of data words becomes a set of pixels displayed on the screen. 

The circuitry elements for sprite display are explained below. 

o Sprite data registers. The registers SPRxDATA and SPRxDATB hold the bit pat
terns that describe one horizontal line of a sprite for each of the eight sprites. A line 
is 16 pixels wide, and each line is defined by two words to provide selection of three 
colors and transparent. 

o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is 
individually sent to the color select circuitry at the time that the pixel associated 
with that bit is being displayed on-screen. 

Immediately after the data is transferred from the sprite data registers, each 
parallel-to-serial converter begins shifting the bits out of the converter, most 
significant (leftmost) bit first. The shift occurs once during each low-resolution pixel 
time and continues until all 16 bits have been transferred to the display circuitry. 
The shifting and data output does not begin again until the next time this converter 
is loaded from the data registers. 

Because the video image is produced by an electron beam that is being swept from 
left to right on the screen, the bit-image of the data corresponds exactly to the 
image that actually appears on the screen (most significant data on the left). 

o Sprite serial video data. Sprite data goes to the priority circuit to establish the 
priority between sprites and playfields. 
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o Sprite position registers. These registers, called SPRxPOS, contain the horizontal 
position value (X value) and vertical positio~ value (Y value) for each of the eight 
sprites. 

o Sprite control registers. These registers, called SPRxCTL, contain the stopping posi
tion for each of the eight sprites and whether or not a sprite is attached. 

o Beam counter. The beam counter tells the system the current location of the video 
beam that is producing the picture. 

o Comparator. This device compares the value of the beam counter to the Y value in 
the position register SPRxPOS. If the beam has reached the position at which the 
leftmost upper pixel of the sprite is to appear, the comparator issues a load signal to 
the serial-to-parallel converter and the sprite display begins. 

Sprite Hardware 121 



Converter 

Parallel to Serial 

DATA BUS 

Equal 

SPRxPOS 
Load Decode 

(68000 or DMA) 

"ARM" Sprite 

SPRxDATA 
Load Decode 

(68000 or DMA) 

...------10 S 

o R SPRxCTL 
Load Decode 

(68000 or DMA) 

Sprite Serial 
Video Data 

----~r-~------------~ 

Output to 
Video Priority 

Logic 

"ARM" 
Sprite 

SPRxDATA 
Load Decode 

(68000 or DMA) 

Figure 4-13: Sprite Control Circuitry 
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Figure 4-13 shows the following: 

o Writing to the sprite control registers disables the horizontal comparator circuitry. 
This prevents the system from sending any output from the data registers to the 
serial converter or to the screen. 

o Writing to the sprite A data register enables the horizontal comparator. This 
enables output to the screen when the horizontal position of the video beam equals 
the horizontal value in the position register. 

o If the comparator is enabled, the sprite data will be sent to the display, with the 
leftmost pixel of the sprite data placed at the position defined in the horizontal part 
of SPRxPOS. 

o As long as the comparator remains enabled, the current contents of the sprite data 
register will be output at the selected horizontal position on a video line. 

o The data in the sprite data registers does not change. It is either rewritten by the 
user or modified under DMA control. 

The components described above produce the automatic DMA display as follows: When 
the sprites are in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH 
and SPRxPTL) is used to read the first two words from the sprite data structure. These 
words contain the starting and stopping position of the sprite. Next, the pointers write 
these words into SPRxPOS and SPRxCTL. After this write, the value in the pointers 
points to the address of the first data word (low word of data for line 1 of the sprite.) 

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel 
will wait until the vertical beam counter value is the same as the data in the VSTART 
(Y value) part of SPRxPOS. When these values match, the system enables the sprite 
data access. 

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is 
the location of the line after the last line of the sprite) and VSTART (from SPRxPOS) 
to see how many lines of sprite data are to be fetched. Two words are fetched per line 
of sprite height, and these words are written into the sprite data registers. The first 
word is stored in SPRxDATA and the second word in SPRxDATB. 

The fetch and store for each horizontal scan line occurs during a horizontal blanking 
interval, far to the left of the start of the screen display. This arms the sprite horizontal 
comparators and allows them to start the output of the sprite data to the screen when 
the horizontal beam count value matches the value stored in the HSTART (X value) 
part of SPRxPOS. 
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If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data 
word pair will be fetched, but it will not be stored into the sprite data registers. It will 
instead become the next pair of data words for SPRxPOS and SPRxCTL. 

When a sprite is used only once within a single display field, the final pair of data words, 
which follow the sprite color descriptor words, is loaded automatically as the next con
tents of the SPRxPOS and SPRxCTL registers. To stop the sprite after that first data 
set, the pair of words should contain all zeros. 

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced 
as pixels automatically under DMA control one line at a time. 

Summary of Sprite Registers 

There are eight complete sets of registers used to describe the sprites. Each set consists 
of five registers. Only the registers for sprite 0 are described here. All of the others are 
the same, except for the name of the register, which includes the appropriate number. 

POINTERS 

Pointers are registers that are used by the system to point to the current data being 
used. During a screen display, the registers are incremented to point to the data being 
used as the screen display progresses. Therefore, pointer registers must be freshly writ
ten during the start of the vertical blanking period. 

SPROPTH and SPROPTL 

This pair of registers contains the I8-bit word address of Sprite 0 DMA data. These 
registers contain the high three bits and low fifteen bits of the address, respectively. 
Because these two register addresses are contiguous, 68000 programmers can write a long 
word into SPROPTH, as usual. 

Pointer register names for the other sprites are: 
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CONTROL REGISTERS 

SPROPOS 

SPRIPTH 
SPR2PTH 
SPR3PTH 
SPR4PTH 
SPR5PTH 
SPR6PTH 
SPR7PTH 

SPRIPTL 
SPR2PTL 
SPR3PTL 
SPR4PTL 
SPR5PTL 
SPR6PTL 
SPR7PTL 

This is the sprite 0 position register. The word written into this register controls the 
position on the screen at which the upper left-hand corner of the sprite is to be placed. 
The most significant bit of the first data word will be placed in this position on the 
screen. Note that the sprites have a placement resolution on a full screen of 320 by 200. 
The sprite resolution is independent of the bit-plane resolution. 

Bit positions: 

oBits 15-8 specify the vertical start position, bits V7 - VO. 

oBits 7-0 specify the horizontal start position, bits H8 - HI. 

NOTE 

This register is normally only written by the sprite DMA channel itself. 
See the details above regarding the organization of the sprite data. This 
register is usually updated directly by DMA. 

SPROCTL 

This register is normally used only by the sprite DMA channel. It contains control infor
mation that is used to control the sprite data-fetch process. 
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Bit positions: 

oBits 15-8 specify vertical stop position for a sprite image, bits V7 - YO. 

o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indi
cates that sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be con
sidered as paired, and as such will be called four bits deep. The odd-numbered 
(higher number) sprite contains bits with the higher binary significance. 

During attach mode, the attached sprites are normally moved horizontally and 
vertically together under processor control. This allows a greater selection of 
colors within the boundaries of the sprite itself. The sprites, although attached, 
remain capable of independent motion, however, and they will assume this 
larger color set only when their edges overlay one another. 

oBits 6-3 are reserved for future use (make zero). 

oBit 2 is bit V8 of vertical start. 

oBit 1 is bit V8 of vertical stop. 

oBit 0 is bit HO of horizontal start. 

Position and control registers for the other sprites are: 

DATA REGISTERS 

SPR1POS 
SPR2POS 
SPR3POS 
SPR4POS 
SPR5POS 
SPR6POS 
SPR7POS 

SPR1CTL 
SPR2CTL 
SPR3CTL 
SPR4CTL 
SPR5CTL 
SPR6CTL 
SPR7CTL 

The following registers, although defined in the address space of the main processor, are 
normally used only by the display processor. They are the holding registers for the data 
obtained by DMA cycles. . 
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SPRODATA, SPRODATB 
SPR1DATA, SPR1DATB 
SPR2DATA, SPR2DATB 
SPR3DATA, SPR3DATB 
SPR4DATA,SPR4DATB 
SPR5DATA,SPR5DATB 
SPR6DATA,SPR6DATB 
SPR7DATA, SPR7DATB 

data registers for Sprite 0 
data registers for Sprite 1 
data registers for Sprite 2 
data registers for Sprite 3 
data registers for Sprite 4 
data registers for Sprite 5 
data registers for Sprite 6 
data registers for Sprite 7 

Summary of Sprite Color Registers 

Sprite data words are used to select the color of the sprite pixels from the system color 
register set as indicated in the following tables. 

If the bit combinations from single sprites are as shown in table 4-6, then the colors will 
be taken from the registers shown. 
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Table 4-6: Color Registers for Single Sprites 

Single Sprites Color 
Sprite Value Register 

o or 1 00 Not used * 
01 17 
10 18 
11 19 

2or3 00 Not used * 
01 21 
10 22 
11 23 

4 or 5 00 Not used * 
01 25 
10 26 
11 27 

6 or 7 00 Not used * 
01 29 
10 30 
11 31 

* Selects transparent mode. 
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If the bit combinations from attached sprites are as shown in table 4-7, then the colors 
will be taken from the registers shown. 

Table 4-7: Color Registers for Attached Sprites 

Attached Sprites 
Color 

Value Register 

0000 Not used * 
0001 17 
0010 18 
0011 19 
0100 20 
0101 21 
0110 22 
0111 23 
1000 24 
1001 25 
1010 26 
1011 27 
1100 28 
1101 29 
1110 30 
1111 31 

* Selects transparent mode. 

Sprite Hardware 129 



Chapter 5 

AUDIO HARDWARE 

Introduction 

This chapter shows you how to directly access the audio hardware to produce sounds. 
The major topics in this chapter are: 

o A brief overview of how a computer produces sound. 

o How to produce simple steady and changing sounds and more complex ones. 
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o How to use the audio channels for special effects, wiring them for stereo sound if 
desired, or using one channel to modulate another. 

o How to produce quality sound within the system limitations. 

A section at the end of the chapter gives you values to use for creating musical notes OR 

the equal-tempered musical scale. 

This chapter is not a tutorial on computer sound synthesis; a thorough description of 
creating sound on a computer would require a far longer document. The purpose here is 
to point the way and show you how to use the Amiga's features. Computer sound pro
duction is fun but complex, and it usually requires a great deal of trial and error on the 
part of the user-you use the instructions to create some sound and play it back, read
just the parameters and play it again, and so on. 

The following works are recommended for more information on creating music with com
puters: 

o Wayne A. Bateman, Introduction to Oomputer }'lusic (New York: John Wiley 
and Sons, 1980). 

o Hal Chamberlain, }'lusical Applications of }'licroprocessors (Rochelle Park, New 
Jersey: Hayden, 1980). 

INTRODUCING SOUND GENERATION 

Sound travels through air to your ear drums as a repeated cycle of air pressure varia
tions, or sound waves. Sounds can be represented as graphs that model how the air 
pressure varies over time. The attributes of a sound, as you hear it, are related to the 
shape of the graph. If the waveform is regular and repetitive, it will sound like a tone 
with steady pitch (highness or lowness), such as a single musical note. Each repetition of 
a waveform is called a cycle of the sound. If the waveform is irregular, the sound will 
have little or no pitch, like a loud clash or rushing water. How often the waveform 
repeats (its frequency) has an effect upon its pitch; sounds with higher frequencies are 
higher in pitch. Humans can hear sounds that have a frequency of between 20 and 
20,000 cycles per second. The amplitude of the waveform (highest point on the graph), 
is related to the perceived loudness of the sound. Finally, the general shape of the 
waveform determines its tone quality, 0)' timbre. Figure 5-1 shows a particular kind of 
waveform, called a sine wave, that represents one cycle of a simple tone. 
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Figure 5-1: Sine Waveform 

In electronic sound recording and output devices, the attributes of sounds are 
represented by the parameters of amplitude and frequency. Frequency is the number of 
cycles per second, and the most common unit of frequency is the Hertz (Hz), which is 1 
cycle per second. Large values, or high frequencies, are measured in kilohertz (KHz) or 
megahertz (MHz). 

Frequency is strongly related to the perceived pitch of a sound. When frequency 
increases, pitch rises. This relationship is exponential. An increase from 100 Hz to 200 
Hz results in a large rise in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly 
noticeable. Musical pitch is represented in octaves. A tone that is one octave higher 
than another has a frequency twice as high as that of the first tone, and its perceived 
pitch is twice as high. 

The second parameter that defines a waveform is its amplitude. In an electronic circuit, 
amplitude relates to the voltage or current in the circuit. When a signal is going to a 
speaker, the amplitude is expressed in watts. Perceived sound intensity is measured in 
decibels (db). Human hearing has a range of about 120 db; 1 db is the faintest audible 
sound. Roughly every 10 db corresponds to a doubling of sound, and 1 db is the smal
lest change in amplitude that is noticeable in a moderately loud sound. Volume, which 
is the amplitude of the sound signal which is output, corresponds logarithmically to deci
bel level. 
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The frequency and amplitude parameters of a sine wave are completely independent. 
When sound is heard, however, there is interaction between loudness and pitch. Lower
frequency sounds decrease in loudness much faster than high-frequency sounds. 

The third attribute of a sound, timbre, depends on the presence or absence of overtones, 
or harmonics. Any complex waveform is actually a mixture of sine waves of different 
amplitudes, frequencies, and phases (the starting point of the waveform on the time 
axis). These component sine waves are called harmonics. A square waveform, for exam
ple, has an infinite number of harmonics. 

In summary, all steady sounds can be described by their frequency, overall amplitude, 
and relative harmonic amplitudes. The audible equivalents of these parameters are 
pitch, loudness, and timbre, respectively. Changing sound is a steady sound whose 
parameters change over time. 

In electronic production of sound, an analog device, such as a tape recorder, records 
sound waveforms and their cycle frequencies as a continuously variable representation of 
air pressure. The tape recorder then plays back the sound by sending the waveforms to 
an amplifier where they are changed into analog voltage waveforms. The amplifier sends 
the voltage waveforms to a loudspeaker, which translates them into air pressure vibra
tions that the listener perceives as sound. 

A computer cannot store analog waveform information. In computer production of 
sound, a waveform has to be represented as a finite string of numbers. This transforma
tion is made by dividing the time axis of the graph of a single waveform into equal seg
ments, each of which represents a short enough time so the waveform does not change a 
great deal. Each of the resulting points is called a sample. These samples are stored in 
memory, and you can play them back at a frequency that you determine. The computer 
feeds the samples to a digital-to-analog converter (DAC), which changes them into an 
analog voltage waveform. To produce the sound, the analog waveforms are sent first to 
an amplifier, then to a loudspeaker. 

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along 
with a table of samples for each. Note that the illustrations are not to scale and that 
there are fewer dots in the wave forms than there are samples in the table. The ampli
tude axis values 127 and -128 represent the high and low limits on relative amplitude. 

134 Audio Hardware 



Triangle Waveform Sine Waveform 
127 

Square Wave 
127 127 

-127 -127 -127 

Samples taken over time-

TIME SINE SQUARE TRIANGLE 

0 0 100 0 
1 39 100 20 
2 75 100 40 
3 103 100 60 
4 121 100 80 
5 127 100 100 
6 121 100 80 
7 103 100 60 
8 75 100 40 
9 39 100 20 

10 0 -100 0 
11 -39 -100 -20 
12 -75 -100 -40 
13 -103 -100 -60 
14 -121 -100 -80 
15 -127 -100 -100 
16 -121 -100 -80 
17 -103 -100 -60 
18 -75 -100 -40 
19 -39 -100 -20 

Figure 5-2: Digitized Amplitude Values 

THE AMIGA SOUND HARDWARE 

The Amiga has four hardware sound channels. You can independently program each of 
the channels to produce complex sound effects. You can also attach channels so that one 
channel modulates the sound of another or combine two channels for stereo effects. 
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Each audio channel includes an eight-bit digital-to-analog converter driven by a direct 
memory access (D11A) channel. The audio D11A can retrieve two data samples during 
each horizontal video scan line. For simple, steady tones, the D11A can automatically 
playa waveform repeatedly; you can also program all kinds of complex sound effects. 

There are two methods of basic sound production on the Amiga - automatic (D11A) 
sound generation and direct (non-D11A) sound generation. When you use automatic 
sound generation, the system retrieves data automatically by direct memory access. 

Forming and Playing a Sound 

This section shows you how to create a simple, steady sound and play it. Many basic 
concepts that apply to all sound generation on the Amiga are introduced in this section. 

To produce a steady tone, follow these basic steps: 

1. Decide which channel to use. 

2. Define the waveform and create the sample table in memory. 

3. Set registers telling the system where to find the data and the length of the 
data. 

4. Select the volume at which the tone is to be played. 

5. Select the sampling period, or output rate of the data. 

6. Select an audio channel and start up the D11A. 

DECIDING WHICH CHANNEL TO USE 

The Amiga has four audio channels. Channels 0 and 3 are connected to the left-side 
stereo output jack. Channels 1 and 2 are connected to the right-side output jack. 
Select a channel on the side from which the output is to appear. 
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CREATING THE WAVEFORM DATA 

The waveform used as an example in this section is a simple sine wave, which produces a 
pure tone. To conserve memory, you normally define only one full cycle of a waveform 
in memory. For a steady, unchanging sound, the values at the waveform's beginning 
and ending points and the trend or slope of the data at the beginning and end should be 
closely related. This ensures that a continuous repetition of the waveform sounds like a 
continuous stream of sound. 

Sound data is organized as a set of eight-bit data items; each item is a sample from the 
waveform. Each data word retrieved for the audio channel consists of two samples. 
Sample values can range from -128 to +127. 

As an example, the data set shown below produces a close approximation to a sine wave. 
Note that the data is stored in byte address order with the first digitized amplitude 
value at the lowest byte address. the second at the next byte address, and so on. Also, 
note that the first byte of data must start at a word-address boundary. This is because 
the audio DMA retrieves one word (16 bits) at a time and uses the sample it reads as 
two bytes of data. 

To use audio channel 0, write the address of "audiodata" into AUDOLC, where the 
audio data is organized as shown below. For simplicity, "AUDxLC" in the table below 
stands for the combination of the two actual location registers (AUDxLCH and 
AUDxLCL). For the audio DMA channels to be able to retrieve the data, the data 
address to which AUDOLC points must be located in the low 512K bytes of RAM. 

Audio Hardware 137 



Table 5-1: Sample Audio Data Set for Channel 0 

audiodata ---> AUDOLC * 100 98 
AUDOLC + 2 ** 92 83 
AUDOLC +4 71 56 
AUDOLC + 6 38 20 
AUDOLC +8 0 -20 
AUDOLC + 10 -38 -56 
AUDOLC + 12 -71 -83 
AUDOLC + 14 -92 -83 
AUDOLC + 16 -100 -98 
AUDOLC + 18 -92 -83 
AUDOLC + 20 -71 -56 
AUDOLC + 22 -38 -20 
AUDOLC + 24 0 20 
AUDOLC + 26 38 56 
AUDOLC + 28 71 83 
AUDOLC + 30 92 98 

Notes 

* Audio data is located on a word-address boundary. 

** AUDOLC stands for AUDOLCL and AUDOLCH. 

TELLING THE SYSTEM ABOUT THE DATA 

In order to retrieve the sound data for the audio channel, the system needs to know 
where the data is located and how long (in words) the data is. 

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low 
fifteen bits, respectively, of the starting address of the audio data. Since these two regis
ter addresses are contiguous, writing a long word into AUDxLCH moves the audio data 
address into both locations. The "x" in the register names stands for the number of the 
audio channel where the output will occur. The channels are numbered 0, I, 2, and 3. 

These registers are location registers, as distinguished from pointer registers. You need 
to specify the contents of these registers only once; no resetting is necessary when you 
wish the audio channel to keep on repeating the same waveform. Each time the system 
retrieves the last audio word from the data area, it uses the contents of these location 
registers to again find the start of the data. Assuming the first word of data starts at 
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location "audiodata" and you are using channel 0, here is how to set the location regis
ters: 

AUDOLC EQU AUDOLCH ;AUDOLC stands for AUDOLCL 

WHEREODATA: 

LEA AUDIODATA, AO 
MOVE.L AO, AUDOLC ;Put address (82 bits) 

; into location register. 

The length of the data is the number of samples in your waveform divided by 2, or the 
number of words in the data set. Using the sample data set above, the length of the 
data is 16 words. You write this length into the audio data length register for this chan
nel. The length register is called AUDxLEN, where "x" refers to the channel number. 
You set the length register AUDOLEN to 16 as shown below. 

SETAUDOLENGTH: MOVE.W #16, AUDOLEN 

SELECTING THE VOLUME 

The volume you set here is the overall volume of all the sound coming from the audio 
channel. The relative loudness of sounds, which will concern you when you combine 
notes, is determined by the amplitude of the wave form. There is a six-bit volume regis
ter for each audio channel. To control the volume of sound that will be output through 
the selected audio channel, you write the desired value into the register AUDxVOL, 
where "x" is replaced by the channel number. You can specify values from 64 to O. 
These volume values correspond to decibel levels. At the end of this chapter is a table 
showing the decibel value for each of the 65 volume levels. For a typical output at 
volume 64, with maximum data values of -128 to 127, the voltage output is between +.4 
volts and -.4 volts. Some volume levels and the corresponding decibel values are shown 
in table 5-2. 
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Table 5-2: Volume Values 

Volume Decibel Value 

64 0 (maximum volume) 
48 -2.5 
32 -6.0 
16 -12.0 (12 db down from the 

volume at maximum level) 

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL. 
For example: 

SET AUDOVOLUME: MOVE.W #48, AUDOVOL 

The decibels are shown as negative values from a maximum of 0 because this is the way 
a recording device, such as a tape recorder, shows the recording level. Usually, the 
recorder has a dial showing 0 as the optimum recording level. Anything less than the 
optimum value is shown as a minus quantity. 

SELECTING THE DATA OUTPUT RATE 

The pitch of the sound produced by the waveform depends upon its frequency. To tell 
the system what frequency to use, you need to specify the sampling period. The sam
pling period specifies the number of system clock ticks, or timing intervals, that should 
elapse between each sample (byte of audio data) fed to the digital-to-analog converter in 
the audio channel. There is a period register for each audio channel. The value of the 
period register is used for count-down purposes; each time the register counts down to 0, 
another sample is retrieved from the waveform data set for output. In units, the period 
value represents clock ticks per sample. The minimum period value you should use is 
124 ticks per sample and the maximum is 65535. For high-quality sound, there are other 
constraints on the sampling period (see the section called "Producing High-quality 
Sound "). Note that a low period value corresponds to a higher frequency sound and a 
high period value corresponds to a lower frequency sound. 
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Limitations on Selection of Sampling Period 

The sampling period is limited by the number of DMA cycles allocated to an audio chan
nel. Each audio channel is allocated one DMA slot per horizontal scan line of the screen 
display. An audio channel can retrieve two data samples during each horizontal scan 
line. The following calculation gives the maximum sampling rate in samples per second. 

2 samples/line X 262.5 lines/frame X 59.94 frames/second = 31,469 samples/second 

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is 
designed to handle 28,867 samples/second. The system timing interval is 279.365 
nanoseconds, or .279365 microseconds. The maximum sampling rate of 28,867 samples 
per second is 34.642 microseconds per sample (1/28,867 = .000034642). The formula for 
calculating the sam piing period is 

Period value = sample interval/clock interval 

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample 
by the number of microseconds per interval: 

34.642 microseconds/sample 
Minimum period 

0.279365 microseconds/interval 

124 timing intervals/sample 

Therefore, a value of at least 124 must be written into the period register to assure that 
the audio system DMA will be able to retrieve the next data sample. If the period value 
is below 124, by the time the cycle count has reached 0, the audio DMA will not have 
had enough time to retrieve the next data sample and the previous sample will be 
reused. 

Specifying the Period Value 

After you have selected the desired interval between data samples, you can calculate the 
value to place in the period register by using the period formula: 

Period value = desired interval/clock interval 
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As an example, say you wanted to produce a 1 KHz sine wave, using a table of eight 
d·ata samples (four data words) (see figure 5-3). 

127 
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Figure 5-3: Example Sine Wave 

Sampled Values: 0 
90 

127 
90 
o 

-90 
-127 

-90 



To output the series of eight samples at 1 KHz (1,000 cycles per second), each full cycle 
is output in 1/1000th of a second. Therefore, each individual value must be retrieved in 
1/8th of that time. This translates to 1,000 microseconds per waveform or 125 
microseconds per sample. To correctly produce this waveform, the period value should 
be 

125 microseconds/sample 
Period value 

0.279365 microseconds/interval 

447 timing intervals/sample 

To set the period register, you must write the period value into the register AUDxPER, 
where "x" is the number of the channel you are using. For example, the following 
instruction sh~ws how to write a period value of 447 into the period register for chan
nelO. 

SETAUDOPERIOD: MOVE.W #447, AUDOPER 

To produce high-quality sound, avoiding aliasing distortion, you should observe the limi
tations on period values that are discussed in the section below called "Producing Qual
ity Sound." 

For the relationship between period and musical pitch, see the section at the end of the 
chapter, which contains a listing of the equal-tempered musical scale. 

PLAYING THE WAVEFORM 

After you have defined the audio data location, length, volume and period, you can play 
the waveform by starting the DMA for that audio channel. This starts the output of 
sound. Once started, the DMA continues until you specifically stop it. Thus, the 
waveform is played over and over again, producing the steady tone. The system uses 
the value in the location registers each time it replays the waveform. 

To start the channel, you write a 1 into the AUDxEN bit of the DMA control register 
named DMACON. To start the DMA, you write a 1 into the DMAEN bit of DMACON. 
All these bits and their meanings are shown in table 5-3. 
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Table 5-3: D11A and Audio Channel Enable Bits 

DMACON Register 

Bit Name Function 

15 SETCLR When this bit is written as a 1, it 
sets any bit in D11ACONW for which 
the corresponding bit position is 
also a 1, leaving all other bits alone. 

9 D11AEN Only while this bit is a 1 can 
any direct memory access occur. 

3 . AUD3EN Audio channel 3 enable . 
2 AUD2EN Audio channel 2 enable. 
1 AUDIEN Audio channel 1 enable. 
0 AUDOEN Audio channel 0 enable. 

For example, if you are using channel 0, then you write a 1 into bit 9 to enable D11A 
and a 1 into bit 0 to enable the audio channel, as shown below. 

SET EQU 
AUDOEN EQU 
D11AEN EQU 

BEGINCHANO: 

$08000 
$01 
$0200 

MOVE.W #(SET + AUDOEN + D11AEN), D11ACONW 

STOPPING THE AUDIO DMA 

You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, 
you cannot resume the output at the same point in the waveform by just writing a 1 in 
the bit again. Enabling an audio channel almost always starts the data output again 
from the top of the list of data pointed to by the location registers for that channel. If 
the channel is disabled for a very short time (less than two sampling periods) it may stay 
on and thus continue from where it left off. 
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The following example shows how to stop audio DMA for one channel. 

CLEAR EQU 0 

STOPAUDCHANO: 

MOVE.W #(CLEAR + AUDOEN), DMACONW 

SUMMARY 

These are the steps necessary to produce a steady tone: 

1. Define the waveform. 

2. Create the data set containing the pairs of data samples (data words). Nor
mally, a data set contains the definition of one waveform. 

3. Set the location registers: 

AUDxLCH (high three bits) 

AUDxLCL (low fifteen bits) 

4. Set the length register, AUDxLEN, to the number of data words to be retrieved 
before starting at the address currently in AUDxLC. 

5. Set the volume register, AUDxVOL. 

6. Set the period register, AUDxPER 

7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the 
SETCLR bit and a 1 in the position of the AUDxEN bit of the channel or chan
nels you want to start. 

EXAMPLE 

In this example, which gathers together all.of the program segments from the preceding 
sections, a sine wave is played through channel O. 
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AUDOLC 
SET 
CLEAR 
AUDOEN 
DMAEN 

SINEDATA: 

EQU 
EQU 
EQU 
EQU 
EQU 

DS.W 

AUDOLCH 
$08000 
o 
$01 
$0200 

o ;Be sure word-aligned 

DC.B 0, gO, 127, gO, 0,-gO,-127,-gO 

MAIN: 

LEA SINEDATA, AO 

WHEREODATA: 

MOVE.L AO, AUDOLC 

SETAUDOLENGTH: 

MOVE.W #4, AUDOLEN 

SETAUDOVOLUME: 

MOVE.W #64, AUDOVOL 

SETAUDOPERIOD: 

MOVE.W #447, AUDOPER 

BEGINCHANO: 

jAddress of data to 
; audio location register 0 

; The 68000 writes 
this as though it were 
a 32-bit register at the 
low-bits location 
(common to all locations 
and pointer registers 
in the system). 

;Set length in words 

; Use maximum volume 

MOVE.W #(SET + DMAEN + AUDOEN), DMACONW 

END 
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Producing Complex Sounds 

In addition to simple tones, you can create more complex sounds, such as different musi
cal notes joined into a one-voice melody, different notes played at the same time, or 
modulated sounds. 

JOINING TONES 

Tones are joined by writing the location and length registers, starting the audio output, 
and rewriting the registers in preparation for the next audio waveform that you wish to 
connect to the first one. This is made easy by the timing of the audio interrupts and the 
existence of back-up registers. The location and length registers are read by the DMA 
channel before audio output begins. The DMA channel then stores the values in back
up registers. Once the original registers have been read by the DMA channel, you can 
change their values without disturbing the operation you started with the original regis
ter contents. Thus, you can write the contents of these registers, start an audio output, 
and then rewrite the registers in preparation for the next waveform you want to connect 
to this one. 

Interrupts occur immediately after the audio DMA channel has read the location and 
length registers and stored their values in the back-up registers. Once the interrupt has 
occurred, you can rewrite the registers with the location and length for the next 
waveform segment. This combination of back-up registers and interrupt timing lets you 
keep one step ahead of the audio DMA channel, allowing your sound output to be con
tinuous and smooth. 

If you do not rewrite the registers, the current waveform will be repeated. Each time 
the length counter reaches zero, both the location and length registers are reloaded with 
the same values to continue the audio output. 

Example 

This example details the system audio DMA action in a step-by-step fashion. 

Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a 
special audio effect, alternating between them. The following sequence shows the action 
of your program as well as its interaction with the audio DMA system. The example 
assumes that the period, volume, and length of the data set remains the same for the 
sine wave and the triangle wave. 
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If (wave = triangle) 
write AUDOLCL with address of sine wave data. 

Else if (wave = sine) 
write AUDOLCL with address of triangle wave data. 

Main Program 

1. Set up volume, period, and length. 

2. Write AUDOLCL with address of sine wave data. 

3. Start DMA. 

4. Continue with something else. 

System Response 

As soon as DMA starts, 

a. Copy to "back-up" length register from AUDOLEN. 

b. Copy to "back-up" location register from AUDOLCL (will be used as a pointer 
showing current data word to fetch). 

c. Create an interrupt for the 68000 saying that it has completed retrieving work
ing copies of length and location registers. 

d. Start retrieving audio data each allocated DMA time slot. 
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PLAYING MULTIPLE TONES AT THE SAME TIME 

You can play multiple tones either by using several channels independently or by sum
ming the samples in several data sets, playing the summed data sets through a single 
channel. 

Since all four audio channels are independently programmable, each channel has its own 
data set; thus a different tone or musical note can be played on each channel. 

MODULATING SOUND 

To provide more complex audio effects, you can use one audio channel to modulate 
another. This increases the range and type of effects that can be produced. You can 
modulate a channel's frequency or amplitude, or do both types of modulation on a chan
nel at the same time. 

Amplitude modulation affects the volume of the waveform. It is. often used to produce 
vibrato or tremolo effects. Frequency modulation affects the period of the waveform. 
Although the basic waveform itself remains the same, the pitch is increased or decreased 
by frequency modulation. 

The system uses one channel to modulate another when you attach two channels. The 
attach bits in the ADKCON register control how the data from an audio channel is 
interpreted (see the table below). Normally, each channel produces sound when it is 
enabled. If the "attach" bit for an audio channel is set, that channel ceases to produce 
sound and its data is used to modulate the sound of the next higher-numbered channel. 
When a channel is used as a modulator, the words in its data set are no longer treated 
as two individual bytes. Instead, they are used as "modulator" words. The data words 
from the modulator channel are written into the corresponding registers of the modulated 
channel each time the period register of the modulator channel times out. 

To modulate only the amplitude of the audio output, you must attach a channel as a 
volume modulator. Define the modulator channel's data set as a series of words, each 
containing volume information in the following format: 

Audio Hardware 149 



Bits Function 

15 - 7 Not used 

6 - 0 Volume information, V6 - VO 

To modulate only the frequency, you must attach a channel as a period modulator. 
Define the modulator channel's data set as a series of words, each containing period 
information in the following format: 

Bits Function 

15 - 0 Period information, PIS - PO 

If you want to modulate both period and volume on the same channe~, you need to 
attach the channel as both a period and volume modulator. For instance, if channel 0 is 
used to modulate both the period and frequency of channell, you set two attach bits
bit 0 to modulate the volume and bit 4 to modulate the period. When period and 
volume are both modulated, words in the modulator channel's data set are defined alter
nately as volume and period information. 

The sample set of data in table 5-4 shows the differences in interpretation of data when 
a channel is used directly for audio, when it is attached as volume modulator, when it is 
attached as a period modulator, and when it is attached as a modulator of both volume 
and period. 

Table 5-4: Data Interpretation in Attach Mode 

Independent Modulating 
Data (not Both Modulating Modulating 
Words Modulating) Period and Volume Period Only Volume Only 

Word I I data I data I I volume for other channel I I period I I volume I 

Word 2 I data I data I I period for other channel I I period I I volume I 

Word 3 I data I data I I volume for other channel I I period I I volume I 

Word 4 I data I data I I period for other channel I I period I I volume I 
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The lengths of the data sets of the modulator and the modulated channels are com-
pletely independent. 

Channels are attached by the system in a predetermined order, as shown in table 5-5. 
To attach a channel as a modulator, you set its attach bit to 1. If you set either the 
volume or period attach bits for a channel, that channel's audio output will be disabled; 
the channel will be attached to the next higher channel, as shown in table 5-5. Because 
an attached channel always modulates the next higher numbered channel, you cannot 
attach channel 3. Writing a 1 into channel 3's modulate bits only disables its audio out
put. 

Table 5-5: Channel Attachment for Modulation 

ADKCON Register 

Bit Name Function 

7 ATPER3 Use audio channel 3 to modulate nothing 
(disables audio output of channel 3) 

6 ATPER2 Use audio channel 2 to modulate period 
of channel 3 

5 ATPERI Use audio channell to modulate period 
of channel 2 

4 ATPERO Use audio channel 0 to modulate period 
of channell 

3 ATVOL3 Use audio channel 3 to modulate nothing 
(disables audio output of channel 3) 

2 ATVOL2 Use audio channel 2 to modulate volume 
of channel 3 

1 ATVOLI Use audio channell to modulate volume 
of channel 2 

0 ATVOLO Use audio channel 0 to modulate volume 
of channell 
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Producing High-quality Sound 

When trying to create high-quality sound, you need to consider the following factors: 

o Waveform transitions. 

o Sampling rate. 

o Efficiency. 

o Noise reduction. 

o Avoidance of aliasing distortion. 

o Limitations of the low pass filter. 

MAKING WAVEFORM TRANSITIONS 

To avoid unpleasant sounds when you change from one waveform to another, you need 
to make the transitions smooth. You can avoid "clicks" by making sure the waveforms 
start and end at approximately the same value. You can avoid "pops" by starting a 
waveform only at a zero-crossing point. You can avoid "thumps" by arranging the aver
age amplitude of each wave to be about the same value. The average amplitude is the 
sum of the bytes in the waveform divided by the number of bytes in the waveform. 

SAMPLING RATE 

If you need high preCISIon in your frequency output, you may find that the frequency 
you wish to produce is somewhere between two available sampling rates, but not close 
enough to either rate for your requirements. In those cases, you may have to adjust the 
length of the audio data table in addition to altering the sampling rate. 

For higher frequencies, you may also need to use audio data tables that contain more 
than one full cycle of the audio waveform to reproduce the desired frequency more accu
rately, as illustrated in figure 5-4. 
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128 

-127 

Samples taken over time -

Always requires an even 
number of samples -

Shows a case in which a high-frequency waveform may need more than one full cycle to accurately 
reproduce the periodic waveform 

Figure 5-4: Waveform with Multiple Cycles 

EFFICIENCY 

A certain amount of overhead is involved in the handling of audio DMA. If you are try
ing to produce a smooth continuous audio synthesis, you should try to avoid as much of 
the system control overhead as possible. Basically, the larger the audio buffer you pro
vide to the system, the less often it will need to interrupt to reset the pointers to the top 
of the next buffer and, coincidentally, the lower the amount of system interaction that 
will be required. If there is only one waveform buffer, the hardware automatically resets 
the pointers, so no software overhead is used for resetting them. 

The "Joining Tones" section illustrated how you could join "ends" of tones together by 
responding to interrupts and changing the values of the location registers to splice tones 
together. If your system is heavily loaded, it is possible that the response to the inter
rupt might not happen in time to assure a smooth audio transition. Therefore, it is 
advisable to utilize the longest possible audio table where a smooth output is required. 
This takes advantage of the audio DMA capability as well as minimizing the number of 
interrupts to which the 68000 must respond. 

/ 
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NOISE REDUCTION 

To reduce noise levels and produce an accurate sound, try to use the full range of -128 
to 127 when you represent a waveform. This reduces how much noise (quantization 
error) will be added to the signal by using more bits of precision. Quantization noise is 
caused by the introduction of round-off error. If you are trying to reproduce a signal, 
such as a sine wave, you can represent the amplitude of each sample with only so many 
digits of accuracy. The difference between the real number and your approximation is 
round-off error, or noise. 

By doubling the amplitude, you create half as much noise because the size of the steps of 
the wave form stays the same and is therefore a smaller fraction of the amplitude. In 
other words, if you try to represent a waveform using, for example, a range of only +3 
to -3, the size of the error in the output would be considerably larger than if you use a 
range of +127 to -128 to represent the same signal. Proportionally, the digital value 
used to represent the waveform amplitude will have a lower error. As you increase the 
number of possible sample levels, you decrease the relative size of each step and, there
fore, decrease the size of the error. 

To produce quiet sounds, continue to define the waveform using the full range, but 
adjust the volume. This maintains the same level of accuracy (signal-to-noise ratio) for 
quiet sounds as for loud sounds. 

ALIASING DISTORTION 

When you use sampling to produce a waveform, a side effect is caused when the sam
pling rate "beats" or combines with the frequency you wish to produce. This produces 
two additional frequencies, one at the sampling rate plus the desired frequency and the 
other at the sampling rate minus the desired frequency. This phenomenon is called 
aliasing distortion. 

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by 
at least 7 KHz. This puts the beat frequency outside the range of the low-pass filter, 
cutting off the undesirable frequencies. Figure 5-5 shows a frequency domain plot of the 
anti-aliasing low-pass filter used in the system. 
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o db 1---,", 

Filter response 

-30 db 

5 kHz 10 kHz 15 kHz 20 kHz 25 kHz 30 kHz 

Filter passes all frequencies below about 5 kHz. 

Figure 5-5: Frequency Domain Plot of Low-Pass Filter 

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 
KHz waveform. Both of the beat frequencies are outside the range of the filter, as shown 
in these calculations: 

12 + 4 = 16 KHz 
12 - 4 = 8 KHz 

Filter response 
Odb 12 kHz sampling frequency 

~D;ff' Sum 

4 kHz 
-30db LI I I I 

5 kHz 10 kHz 15 kHz 20 kHz 

Desired output frequency 

I I 
25 kHz 30kHz 

Figure 5-6: Noise-free Output (No Aliasing Distortion) 
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You can see in figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce 
a 4 KHz waveform. One of the beat frequencies (10 - 4) is within the range of the filter, 
allowing some of that undesirable frequency to show up in the audio output. 

Filter response 
Odb 

~;ff' 
10 kHz sampling frequency 

Sum 

4kHz 1\ 
-30 db LI I I I I 

5 kHz 10 kHz 15 kHz 20 kHz 25 kHz 30 kHz 

Desired output frequency 

Figure 5-7: Some Aliasing Distortion 

All of this gives rise to the following equation, showing that the sampling frequency 
must exceed the output frequency by at least 7 KHz, so that the beat frequency will be 
above the cutoff range of the anti-aliasing filter: 

Minimum sampling rate = highest frequency component + 7 KHz 

The frequency component of the equation is stated as "highest frequency component" 
because you may be producing a complex waveform with multiple frequency elements, 
rather than a pure sine wave. 

LOW-PASS FILTER 

The system includes a low-pass filter that eliminates aliasing distortion as described 
above. This filter becomes active around 4 KHz and gradually begins to attenuate (cut 
off) the signal. Generally, you cannot clearly hear frequencies higher than 7 KHz. 
Therefore, you get the most complete frequency response in the frequency range of 0 - 7 
KHz. If you are making frequencies from 0 to 7 KHz, you should select a sampling rate 
no less than 14 KHz, which corresponds to a sampling period in the range 124 to 256. 
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At a sampling period around 320, you begin to lose the higher frequency values between 
o KHz and 7 KHz, as shown in table 5-6. 

Table 5-6: Sampling Rate and Frequency Relationship 

Sampling Sampling Maximum Output 
Period Rate (KHz) Frequency (KHz) 

Maximum sampling rate 124 29 7 

Minimum sampling rate 256 14 7 
for 7 KHz output 

Sampling rate too low 320 11 4 
for 7 KHz output 

Using Direct (Non-DMA) Audio Output 

It is possible to create sound by writing audio data one word at a time to the audio out
put addresses, instead of setting up a list of audio data in memory. This method of con
trolling the output is more processor-intensive and is therefore not recommended. 

To use direct audio output, do not enable the DMA for the audio channel you wish to 
use; this changes the timing of the interrupts. The normal interrupt occurs after a data 
address has been read; in direct audio output, the interrupt occurs after one data word 
has been output. 

Unlike in the DMA-controlled automatic data output, in direct audio output, if you do 
not write a new set of data to the output addresses before two sampling intervals have 
elapsed, the audio output will cease changing. The last value remains as an output of 
the digital-to-analog converter. 

The volume and period registers are set as usual. 
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The Equal-tempered Musical Scale 

This section gives a close approximation of the equal-tempered scale. The "Period" 
column gives the period count you enter into the period register. 

See the explanatory notes following this table for determining AUDxLEN value. 

Table 5-7: The Equal-tempered Scale 

Period Note Ideal Actual 
Frequency Frequency 

(with AUDxLEN=8) (with AUDxLEN=8) 

508 A 440.0 440.4 
480 A# 466.2 466.1 
453 B 493.9 493.9 
428 C 523.3 522.7 
404 C# 554.4 553.8 
381 D 587.3 587.2 
360 D# 622.3 621.4 
339 E 659.3 659.9 
320 F 698.5 699.1 
302 F# 740.0 740.8 
285 G 784.0 785.0 
269 G# 830.6 831.7 

254 A 880.0 880.8 
240 A# 932.3 932.2 
226 B 987.8 989.9 
214 C 1046.5 1045.4 
202 C# 1108.7 1107.5 
190 D 1174.7 1177.5 
180 D# 1244.5 1242.9 
170 E 1318.5 1316.0 
160 F 1396.9 1398.3 
151 F# 1480.0 1481.6 
143 G 1568.0 1564.5 
135 G# 1661.2 1657.2 
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Notes for table 5-7: 

In this scale, the frequency for the note A is 440.0 Hz and A# is the twelfth root of 
2 (1.059463) times higher in frequency than A. The note B is the twelfth root of 2 
higher than A#. This is followed by 0, 0#, D, D#, E, F, F#, G, and G#, and 
goes back to A at 880.0 Hz, an octave higher, and so on. Use this scale for 
waveforms where the fundamental is 2 to the nth bytes long and where n is an 
integer. For example, for A at 440.0 Hz with a period of 508, the sample table con
tains 16 samples per cycle: 

3579545 clocks/second 
= 16 samples/cycle 

508 clocks/sample X 440 cycles/second 

n=4 

It follows that for A at 440.0 Hz with a period of 254, the sample table has to con
tain 32 samples per cycle (AUDxLEN = 16). 

The general rule is that doubling the sampling frequency (halving the sampling 
period) changes the octave of the note being played. Thus, if you playa 0 at a 
sampling period of 256, then playing the same note with a sampling period of 128 
gives a 0 an octave higher. 

Before using the lower octaves in this table, be sure to read the section called "Alias
ing Distortion." . 
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Decibel Values for Volume Ranges 

Table 5-8 provides the corresponding decibel values for the volume ranges of the Amiga 
system. 

Table 5-8: Decibel Values and Volume Ranges 

Volume Decibel Value Volume Decibel Value 

64 0.0 32 -6.0 
63 -0.1 31 -6.3 
62 -0.3 30 -6.6 
61 -0.4 29 -6.9 
60 -0.6 28 -7.2 
59 -0.7 27 -7.5 
58 -0.9 26 -7.8 
57 -1.0 25 -8.2 
56 -1.2 24 -8.5 
55 -1.3 23 -8.9 
54 -1.5 22 -9.3 
53 -1.6 21 -9.7 
52 -1.8 20 -10.1 
51 -2.0 19 -10.5 
50 -2.1 18 -11.0 
49 -2.3 17 -11.5 
48 -2.5 16 -12.0 
47 -2.7 15 -12.6 
46 -2.9 14 -13.2 
45 -3.1 13 -13.8 
44 -3.3 12 -14.5 
43 -3.5 11 -15.3 
42 -3.7 10 -16.1 
41 -3.9 9 -17.0 
40 -4.1 8 -18.1 
39 -4.3 7 -19.2 
38 -4.5 6 -20.6 
37 -4.8 5 -22.1 
36 -5.0 4 -24.1 
35 -5.2 3 -26.6 
34 -5.5 2 -30.1 
33 -5.8 1 -36.1 

0 Minus infinity 
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The Audio State Machine 

For an explanation of the various states, refer to figure 5-8. There is one audio state 
machine for each channel. The machine has eight states and is clocked at the system 
clock frequency of 3.58 MHz. Three of the states are basically unused and just transfer 
back to the idle (OOO) state. One of the paths out of the idle state is designed for 
interrupt-driven operation (processor provides the data), and the other path is designed 
for DMA-driven operation (the "Agnus" special chip provides the data). 

In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs 
immediately after data is written by the processor. In the 010 state the upper byte is 
output, and in the 011 state the lower byte is output. Transitions such as 
010-011-010 occur whenever the period counter counts down to one. The period 
counter is reloaded at these transitions. As long as the interrupt is cleared by the pro
cessor in time, the machine remains in the main loop. Otherwise, it enters the idle state. 
Interrupts are generated on every word transition (011-010). 

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent 
to Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data 
word must be thrown away. State 101 is entered as soon as this word arrives; a request 
for the next data word has already gone out. When the data arrives, state 010 is 
entered and the main loop continues until the HMA is turned off. The length counter 
counts down once with each word that comes in. When it finishes, a DMA restart 
request goes to Agnus along with the regular DMA request. This tells Agnus to reset the 
pointer to the beginning of the table of data. Also, the length counter is reloaded and 
an interrupt request goes out soon after the length counter finishes (counts to one). The 
request goes out just as the last word of the waveform starts its output. 

DMA requests and restart requests are transferred to Agnus once each horizontal line, 
and the data comes back about 14 clock cycles later (the duration of a clock cycle is 
280 ns). 

In attach mode, things run a little differently. In attach volume, requests occur as they 
do in normal operation (on the 011-010) transition). In attach period, a set of requests 
occurs on the 010-011 transition. 'When both attach period and attach volume are 
high, requests occur on both transitions. 

If the sampling rate is set much higher than the normal maximum sampling rate 
(approximately 29 KHz). the two samples in the buffer register will be repeated. If the 
filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature 
can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in 
the memory map, with plus values in the even bytes and minus values in the odd bytes. 
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The symbols used in the- state diagram are explained in the following list. Upper-case 
names indicate external signals; lower-case names indicate local signals. 

AUDxON 

AUDxIP 

AUDxIR 

intreql 

intreq2 

AUDxDAT 

AUDxDR 

AUDxDSR 

dmasen 

percntrld 

percount 

perfin 

lencntrld 

lencount 

lenfin 

volcntrld 

pbufldl 

pbufld2 

DMA on "x" indicates channel number (signal from DMACON). 

Audio interrupt pending (input to channel from interrupt circuitry). 

Audio interrupt request (output from channel to interrupt 
circuitry) 

Interrupt request that combines with intreq2 to form AUDxIR .. 

Prepare for interrupt request. Request comes out after the next 
011-010 transition in normal operation. 

Audio data load signal. Loads 16 bits of data to audio channel. 

Audio DMA request to Agnus for one word of data. 

Audio DMA request to Agnus to reset pointer to start of block. 

Restart request enable. 

Reload period counter from back-up latch typically written by pro
cessor with AUDxPER (can also be written by attach mode). 

Count period counter down one latch. 

Period counter finished (value = 1) .. 

Reload length counter from back-up latch. 

Count length counter down one notch. 

Length coun tel' finished (value = 1). 

Reload volume counter from back-up latch. 

Load output buffer from holding latch written to by AUDxDAT. 

Like pbufldl, but only during 010-011 with attach period. 
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AUDxAV 

AUDxAP 

penhi 

napnav 

sq2,l,O 

Attach volume. Send data to volume latch of next channel instead 
of to D~A converter. 

Attach period. Send data to period latch of next channel instead of 
to the D~A converter. 

Enable the high 8 bits of data to go to the D~A converter. 

/AUDxAV * /AUDxAP + AUDxAV-no attach stuff or else attach 
volume. Condition for normal DMA and interrupt requests. 

The name of the state flip-flops, MSB to LSB. 
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SQl 

Brackets I J indicate action on condition 
Parentheses I ) indicate cause of state transition 
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Except for this case, drnasen is true } 
only when LENFIN=l. 
Also, AUOxDSf'l""AUDxDR • drnasen 

Figure 5-8: Audio State Diagram 



Chapter 6 

BLITTER HARDW" ARE 

Introduction 

The blitter is a high-performance graphics engine that uses up to four DMA channels. 
The operations it performs after a set-up of its registers are considerably faster than 
those performed by the 68000. The blitter can be used for data copying. It includes 
features to facilitate copying and processing of "rectangular" regions of memory. Typi
cally, these regions are areas within graphics images. The blitter also does .line drawing. 
The process of performing a blitter operation is sometimes called a blit. 
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The blitter uses up to four DMA channels. Three DMA channels are dedicated to 
retrieving data from memory to the blitter. These ~re designated as source A, source B, 
and source C. The one destination DMA channel is designated as destination D. As is 
shown in the following sections, it is not always necessary to use all the sources, nor is it 
always appropriate to use the destination DMA channel. 

Each channel may be independently enabled by bits 11, 10, 9, and 8 of BLTCONO. 
These are called USEA, USEB, USEC, and USED. All three sources (if enabled) are 
fetched from memory in a pipelined fashion and held in registers for logic combination 
before being sent to the destination. Each channel has its own memory pointer register 
and its own modulo register. 

A quick summary of blitter features and operations follows. Each of these topics is dis
cussed in this chapter. The reader is also referred to the descriptions of registers whose 
names start with "BLT" in appendix A. 

o DATA COPYING - The blitter can copy bit-plane image data anywhere in the 
lower 512K of memory. 

o MULTIPLE POINTERS AND MODULOS - The blitter is provided with a 
separate pointer and modulo register for each of the sources and for the destina
tion. This allows the blitter to move data to and from identical rectangular 
windows within different sizes of larger playfield images. 

o ASCENDING AND DESCENDING ADDRESSING - The blitter can change 
addresses in an ascending or descending manner. That is, it can either start at 
the bottom address of both the source and the destination areas and move the . . 

data while incrementing addresses or start at the top address of the source and 
destination and decrement addresses during the move. 

o RECTANGULAR AND LINEAR ADDRESS SCANNING - The blitter can pre
cess either linear or rectangular regions. 

o LOGIC OPERATIONS - Instead of simply retrieving data from a single source, 
the blitter can retrieve data from up to three sources as it prepares the result for 
a possible destination area. Before a blit is started, the blitter is set up to per
form one out of 258 possible logic operations on the three data sources as they 
are being transferred. 

o SHIFTING - The blitter can shift one or two of its data sources up to 15 bits 
before applying it to the logic operation, allowing movement of images in 
memory across word boundaries. 
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o MASKING - The blitter can mask the leftmost and rightmost data word from 
each horizontal line. Mask registers are provided for the first and the last words 
on every line of blitter data. This allows logic operations on bit-boundaries from 
both the left and the right edge of a rectangular region. 

o ZERO DETECTION - The blitter can ~tore the result of the logic operations 
back into memory or simply sense whether there were any 1 bits present as a 
result of the logic operation. This feature can be used for hardware-assisted 
software collision detection. 

o AREA-FILLING - The blitter can perform a hardware-assisted area fill between 
pre-drawn lines. 

o LINE-DRAWING - The blitter can draw ordinary lines at any angle and can 
also apply a pattern to the lines it draws. It can also draw special lines with one 
pixel dot per horiiontalline (a special mode needed for use with the blitter fill 
operation ). 

Data Copying 

The primary purpose of the blitter is to copy (transfer) data in large blocks from one 
memory location to another, with or without processing. The name "blitter" stands for 
"block image transferrer." 

Images in memory are usually stored in a linear fashion; each word of data on a line is 
located at an address that is one greater than the word on its left. (See figure 6-1). 
Note that each line is a "plus one" continuation of the previous line. 
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20 21 22 23 24 24 26 
27 28 29 30 31 32 33 
34 35 36 37 38 39 40 
41 42 43 44 45 46 47 
48 49 50 51 52 53 54 
55 56 57 58 59 60 61 

Figure 6-1: How Images are Stored in Memory 

The map in figure 6-1 represents a single bit-plane (one bit of color) of an image at word 
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a sin
gle bit-plane. If this image required sixteen colors, four bit-planes like this would be 
required in memory, and four copy (move) operations would be required to completely 
move the image. 

The blitter is very efficient at copying such blocks because it needs to be told only the 
starting address (20), the destination address, and the size of the block (height = 6, 
width = 7). It will then automatically move the data, one word at a time, whenever the 
data bus is available. When the transfer is complete, the blitter will signal the processor 
with a flag and an interrupt. 

Note that this copy (move) operation operates on memory and mayor may not change 
the memory currently being used for display. 

Pointers and Modulos 

Pointer registers are used to point to the address in memory where the next word of 
source or destination data is located. Because pointer registers must address 512 Kbytes 
of memory, they occupy two 16-bit addresses. For example, the pointer for source chan
nel A has two register addresses. BLTAPTL contains the low-order part (bits 15-0) and 
BLTAPTH contains the high-order part (bits 18-16) of the pointer address. Pointer 
registers address word boundaries so bit 0 is always a o. 

168 Blitter Hardware 



Pointer registers BLTBPTL, BLTBPTH, BLTCPTL, BLTCPTH, BLTDPTL, and 
BLTDPTH apply to the B, C, and D channels, respectively. The notation BLTxPTx is 
used to refer to the pointer registers generically. 

The blitter uses modulos to allow manipulation of smaller images within larger images. 
A modulo is the difference between the width of the larger image and the smaller image 
being manipulated. There are four modulos in the blitter-BLTAMOD, BLTBMOD, 
BLTCMOD, and BLTDMOD. This allows each of the three sources and the destination 
to have a larger bit-plane image of a different size. 

Modulos are 16-bit signed numbers. When they are added to the corresponding pointer 
register, they are sign-extended to match the larger number of bits in the pointer regis
ter. Since word addressing is used, bit 0 of the modulo is always a o. 

Figure 6-3 shows a possible bit-plane image that is larger than the source window being 
used by the blitter. The numbers represent the addresses (in memory) of the data words 
containing the image. 

20 21 22 23 

27 28 29 30 

34 35 36 37 

41 42 43 44 

48 49 50 51 

55 56 57 58 

24 25 

31 32 

38 39 

45 46 

52 53 

59 60 

26 

33 

40 

47 

54 

61 

.. Larger source 
bit-plane image 

Smaller source window 
for blitter operations 

Figure 6-2: Bit-plane Image Larger than the Blitter Source Window 

Note that in order to operate on the smaller window only, the address sequence must be 
as follows: 

36, 37, 38" 43, 44, 45" 50, 51, 52 

This requires a normal increment (+1) each time, and at the end of each window line the 
addition of a jump value of 4, to bring the address pointer to the start of the next win
dow line. This jump value is called the modulo and is equal to the difference between 
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the width of the large image and the width of the smaller window. 

The blitter has a separate modulo register for each of the three possible source images 
and one for the destination image (four in all). This allows the larger bit map image of 
each source and the destination to be a different size, even though the smaller window 
for each is identical. 

Note that although the hardware deals in words for pointers and modulos, the values 
loaded into these hardware registers from the 68000 are treated as byte counts. For 
example, a jump value of 4 for a modulo would actually be an 8 when written from the 
68000. 

Ascending and Descending Addressing 

It is important to be able to control the direction of the address increment or decrement 
when the source and destination areas overlap. Ascending or descending is specified for 
overlapping data moves either to move a block of data or to fill a region with a particu
lar value. 

If you wish to move data toward a higher address in memory with an overlap between 
source and destination areas, you should use the descending (address decrement) mode 
for the data move. If you wish to move data toward a lower address in memory with an 
overlap between the source and destination areas, you should use the ascending (address 
increment) mode for the data move. The descending mode is selected with bit 1 of 
BLTCONl. 

If the source and destination data areas overlap in a blitter operation, there is a possibil
ity of writing to a particular location as the destination before it was read as the source. 
To prevent this kind of data destruction, you must take care to correctly choose ascend
ing or descending mode. Also, you may need to offset the source or destination. 

Using table 6-4 at the end of the chapter, you can observe the order of operations and 
determine the required offset or mode. Pay careful attention to the notes. It helps to 
draw pictures. 
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Rectangular or Linear Address Scanning 

The BLTSIZE register is written to define the horizontal and vertical size of a rectangu
lar region of memory. The pointer register (BLTxPTx) specifies where in memory the 
corresponding data block starts. The blitter adds (in ascending mode) or subtracts (in 
descending mode) 2 from the pointer register for each 16-bit word transferred until the 
count of "horizontal" words in the BLTSIZE register is met. Then it adds the contents 
of the modulo register (BLTxMOD) to the pointer register. The value in the modulo 
register thus represents the value to be added to the pointer register to get it from the 
point in memory just past the end of a horizontal line to the beginning of the next hor
izontalline of the rectangular region. 

The blitter can be used to process linear rather than rectangular regions by setting the 
horizontal or vertical count in BLTSIZE to 1. 

Blitter Logic Operations 

Three sources (A, B, and C) are available to the blitter logic unit. These sources are 
usually one bit-plane from each of three separate graphics images. While each of these 
sources is a rectangular region composed of many points, the same logic operation will be 
performed on each point throughout the rectangular region. Accordingly, for purposes 
of defining the blitter logic operation it is only necessary to describe what happens for all 
of the possible combinations of one bit from each of the three sources. Therefore, there 
are only eight possible data combinations (minterms). For each of these input possibili
ties you need to specify whether the corresponding D (destination) output bit is on or 
off. This information is collected in a standard format, the LF control byte in the 
BLTCONO register, shown below. This byte programs the blitter to perform one of the 
256 possible logic operations on three sources for a given blit. 

For example, an LF control byte of $80 ( = 1000 0000 binary) turns on bits only for 
those points of the D destination rectangle where the corresponding bits of A, B, and C 
sources were all on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which 
correspond to other combinations for A, B, and C, will be O. This is because bits 6 
through 0 of the LF control word, which specify the D output for these situations, are 
set to O. The following paragraphs discuss two conceptual approaches to designing this 
LF control byte. One approach uses logic equations; the other uses Venn diagrams. 
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.DESIGNING THE LF CONTROL BYTE WITH LOGIC EQUATIONS 

Because it can logically combine data bits from separate image sources during a data 
move, the blitter is very efficient in performing graphics drawing and animation opera
tions. For example, you could design a rectangular object to combine on-screen with a 
pre-existing graphic Ima~e (perhaps a car that you want to move in front of some 
buildings). 

Producing this effect requires predrawn images of both the car and the buildings. To 
animate the car (that is, to move it in front of the buildings), first save the background 
image where the car will be placed. Next, copy the car in its first location. Then restore 
the old background image and save a new section of the background from the second 
location. Again, copy the car, this time to the second location. A continuous sequence 
of save, draw, and restore creates the desired effect. 

Assume source A is the car image outline (mask), source B is one of the car image's bit 
planes, and source 0 is building data or background. The following operation saves the 
background where the car is going to be placed (destination on the left, sources on the 
right): 

T=AO 

This equation states that the background (0) should be saved (copied) to a temporary 
destination (T) wherever the car outline mask (A) "and" the background (0) exist 
together. 

Now the car is placed in the background with the following operation: 

This equation states that the destination is the same as the background source (0), and 
background (0) should be replaced with car data (B) wherever the car outline mask (A) 
is true, but (or) should stay background (0) wherever the mask is not true (A). Now the 
background must be restored (to prepare for car placement in a different location) using 
the following operation: 

C=AT 

This equation states that the background (0) should be replaced with the saved back
ground (T) wherever the car outline mask exists (A "and" T). 
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If you shift the data and the mask to a new location and repeat the above three steps 
over and over, the car will appear to move across the background (the buildings). 

Blitter Logic Operations - Combining Minterms 

The blitter performs various logic operations, such as the one shown in the last section, 
by combining min terms. A minterm is one of eight possible logical combinations of data 
bits from three different data sources. 

For example, the following equation uses two minterms, ABC and ABC: 

D=ABC+ABC 

This means that the logic value of D is a 1 if either ABC = 1 or ABC = 1. 

Another way of reading this equation is that D is true if and only if both A and Bare 
true. This is because the equation could be grouped as: 

D=AB(C+C) 

However, since the term (C + C) is always true, this equation reduces to D = AB. 
Therefore, selecting the two minterms ABC and ABC will give the logic operation 
D = AB. These two minterms are selected with bits 7 and 6 of BLTCONO. 

The minterms that can be selected by BLTCONO control bits are as follows: 

MINTERMS: ABC ABC ABC ABC ABC ABC ABC ABC 

ENABLE BITS 
(BLTCONO LF7-LFO): 7 6 5 4 3 2 1 0 

Since there are eight minterms, there are 256 possible equations that can be selected. 

Table of Commonly Used Equations 

For your convenience, table 6-1 contains a set of commonly used equations. The last one 
in the table ( D = AB + AC ) is often referred to as the "cookie-cut" minterm selector. 
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Table 6-1: Table of Common Minterm Values 

Selected BLTCONO Selected BLTCONO 
Equation LF Code Equation LF Code 

D=A FO D= AB CO 

D=A OF D= Ai3 30 

D=B CC D= AB OC 

D=B 33 D= AB 03 

D=C AA D= BC 88 

D=C 55 D= BC 44 

D=AC AO D= BC 22 

D=AC 50 D= AO 11 

D=AC OA D= A+B F3 

D=AC 05 D= A+B 3F 

D=A+B FC D= A+C F5 

D=A+B CF D= A+C 5F 

D=A+C FA D= B+C DD 

D=A+C AF D=IJ+C 77 

D=B+C EE D= AB+AC CA 

D=B+C BB 
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Equation-to-Minterm Conversion 

An example of converting an equation to minterm format in order to derive the select 
code is given below: 

D = AB + AC (Starting equation) 

D = AB (C + C) + AC (B + B) (Multiplying by 1) 

D = ABC + ABC + ABC + ABC (Final minterms) 

This final form contains only terms that contain all of the input sources. These are the 
min terms you use. These min terms are selected with the minterm enable bits LF7-LFO 
as shown below: 

ABC ABC ABC ABC ABC ABC ABC ABC (Available 
minterms) 

(BLTCONO 
1 1 0 0 1 0 1 0 LF 7-0 code in binary 

C A LF 7-0 code in hex 

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS 

You can use Venn diagrams as an aid in selecting minterms. The Venn diagram in 
figure 6-3 shows a set of three circles labeled A, Band C. In the diagram, the numbers 0 
through 7 in various areas correspond to the min term numbers shown in the preceding 
section. 

To select which min terms are necessary to produce a certain kind of equation result, you 
need only examine the circles and their intersections and copy down the numbers seen 
there. 
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Blitter 

Figure 6-3: Blitter Minterm Venn Diagram 

Examples of Venn Diagram Interpretation 

1. It you wish to select a function D = A (that is, destination = A source only), you 
can select only the minterms that are totally enclosed by the A-circle in the figure 
above. This is the set of minterms 7, 6, 5, and 4. When written as a set of Is for the 
selected min terms and Os for those not selected, the value becomes: 

76543210 MINTERM NUMBERS 

11110000 SELEOTED MINTERMS 

F o equals $FO 

2. If you wish to select a function that is a combination of two sources, you then look 
for the min terms by both of the circles in their common area. For example, the com
bination AB (A "and" B) is represented by the area common to both the A and B 
circles. This area encloses both minterms 7 and 6. 
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76543210 

11000000 equals $CO. 

3. If you wish to use a function that is "not" one of the sources, such as A, you take 
all of the min terms not enclosed by the circle represented by A on the figure. 

4. If you wish to combine minterms, you need only "or" them together. For example, 
the equation AB + BC results in: 

AB= 
BC= 

Shifting 

11001000 
10001000 

1 1 0 0 1 0 0 0 = $C8 

When bit-plane images are stored with sixteen I-bit pixels in a memory word, situations 
arise where a particular pixel must be in a different bit position within a word before 
and after a block transfer. 

For example, as described previously under "Logic Operations," the movement of a car 
image (B) across a background (C) requires both the car image (B) and the car outline 
mask (A) to be shifted to a new position each time the background is saved (T = AC), 
the car is placed (C = AB + A 0), and the background is restored (C = AT). As the 
movement proceeds, the edge of the car image can, in general, land on any bit position 
within a 16-bit word. This illustrates the need for a high-speed shift capability within 
the blitter. 

Accordingly, the blitter contains a circuit known as a barrel shifter that can be used 
with both the A and the B data sources. It can shift these sources from 0 to 15 bits. It 
is a true barrel shifter; bigger shifts do not take more time than smaller shifts as they 
would if performed by the microprocessor. This shifter allows movement of images on 
pixel boundaries, even though the pixels are addressed 16 at a time by each word 
address of the bit-plane image. 
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There are two shift controls. Bits 15 through 12 of BLTCONO select the shift value for 
source A. Bits 15 through 12 of BLTCONI select the shift value for source B. Both 
values are normally set the same. The shift controls are used in a special way during 
line drawing. See "Line Drawing" below. 

Masking 

If an object is not an even multiple of 16 bits in width, the blitter can mask off either 
the left or the right edge or both in order to work with only the actual bit-boundary rec
tangle enclosing the object. First- and last-word masking is particularly useful when you 
need to store the images of a text font in a packed edge-to-edge organization. 

For example, assume a packed font that contains both an "H" and an "I" as shown in 
figure 6-4. 

111 1111111 
11 11 11 
11 11 11 
111111111 11 
111111111 11 
11 11 11 
11 11 11 

111 1111111 

Figure 6-4: A Packed Font 

To isolate the "I" character, the first 11 bits along the left edge of the enclosing rectan
gle must be masked. The blitter includes this capability, called the first-word mask, and 
applies it to the leftmost word on each horizontal line. Only when there is a 1 bit in the 
first-word mask will that bit of source A actually appear in the logic operation. 

For example, if the first-word mask (BLTAFWM) is 0000000000001111, the data the 
blitter will see, using the input for source A shown above, is shown in figure 6-5. 
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1111 
11 
11 
11 
11 
11 
11 
11 

1111 

Figure 6-5: Blitter Masking Example 

In a similar way, the blitter's last-word mask (BLTALWM) masks the rightmost word of 
the source A data. Thus, it is possible to extract rectangular data from a source whose 
right and left edges are between word boundaries. 

If the window is only one word wide (as illustrated above), the first and last word masks 
will overlap, and source-A bits will be passed only where both masks are true. This 
example assumed the last word mask was loaded with all Is ($FFFF) as all masks should 
be when they are not needed. 

Zero Detection 

A blitter zero flag is provided that can be tested to determine if the logic operation 
selected has resulted in a null (empty = all zeros) logic operation result. The zero flag 
(BZERO) in bit 13 of DMACONR will stay true if the result is all zeros. 

This feature is usually used to assist collision detection by "and"ing two images together 
to test for overlap. The operation D = AB is performed (D can actually be disabled), 
and if images A and B do not overlap, the zero flag will stay true. 

When the purpose of a blit is only to do zero detection and not to generate a D destina
tion image, the USED bit (bit 8 of BLTCONO) can be turned off to save time and bus 
cycles. 
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Area Filling 

In addition to copying data, the blitter can simultaneously perform a fill operation dur
ing the copy. The fill operation has only one restriction: the area to be filled must be 
defined by first drawing untextured lines that are only one bit wide. A special line draw 
mode is available for this (see the "Line Drawing" section). 

INCLUSIVE (NORMAL) AREA FILLING 

Figure 6-6 shows a typical area fill. It demonstrates one of the bars from a bar chart. 

Before After 

001000100 001111100 
001000100 001111100 
001000100 001111100 
001000100 001111100 

Figure 6-6: Area-fill Example - Bar Chart 

A blitter line-draw is first performed to provide the two vertical lines, each one bit wide. 
To fill this area, you follow these steps. NOTE: A fill operation can be performed dur
ing other blitter data copy operations; however, it is often done separately, as shown 
here. 

1. Set the modulos equal to the width of the total image minus the width of the 
rectangle to be filled. 

(BLTxMOD) (x = A,B,C,D) 

2. Set the source and destination pointers to the same value. A case like this 
requires only one source and destination. This should point to the last (lower
right) word of the enclosing rectangle (see also item 3 below). 

(BLTxPTH, BLTxPTL) (x = A,B,C,D) 
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3. Run the blitter in the descending direction. The fill operation operates 
correctly only in the descending mode (right to left). 

(BLTCONl, Bit 1 = 1) 

4. Use the control bit called "FCI" (for fill-carry-in) to define how the fill opera
tion should be performed. 

(BLTCONl, Bit 2 = 0) 

This defines the fill start state as a O. 

5. Define the horizontal and vertical size of a rectangle of words that will enclose 
the lines around the area to be filled. This value must be written to the size 
control (BLTSIZE) register tostart the fill. 

The blitter uses the FCI bit as the starting fin state, beginning at the rightmost edge of 
each line. For each "1" bit in the source area, the blitter "flips" the fill state, either 
filling or not filling the space with l's. This continues for each line until the left edge of 
the blit is reached. At that point, the filling stops. For another example, examine the 
figure below. Only the 1 bits are shown in figure 6-7. The 0 bits are blank. The figure 
is not drawn to scale. 

Before After 

1 1 1 1 11111 11111 
1 1 1 1 11111 11111 

1 1 1 1 1111 1111 
1 1 1 1 111 111 

11 11 11 11 
1 1 1 1 111 111 

1 1 1 1 1111 1111 
1 1 1 1 11111 11111 

Figure 6-7: Use of the FCI Bit - Bit Is a 0 

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with Is and the 
area inside the lines is left with Os in between. 
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Before 

1 1 1 
1 1 1 

1 1 1 
1 1 

11 
1 1 

1 1 1 
1 1 1 

1 
1 
1 

1 1 
11 

1 1 
1 
1 

After 

111 111111 11 
111 1111111 11 
1111 11111111 11 
11111 111111111 11 
111111111111111111 
11111 111111111 11 
1111 11111111 11 
111 1111111 11 

Figure 6-8: Use of the FCI Bit - Bit Is a 1 

EXCLUSIVE AREA FIT..LING 

There are two fill enable bits within BLTCONl. They are called IFE (for "Inclusive Fill 
Enable") (used in the previous examples), and EFE (for "Exclusive Fill Enable") (used in 
the example below). 

Exclusive fill enable means to exclude (remove) the outline on the trailing edge (left side) 
of the fill. 

Since the blitter is running in descending mode during a fill, the trailing edge is formed 
from the leftmost of each pair of bits on a horizontal line. 

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be 
used. Figure 6-9 shows how a single-point vertex is produced using exclusive-fill enable. 
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Before After Exclusive Fill 

1 1 1 1 1111 1111 
1 1 1 1 111 111 

1 1 1 1 11 11 
11 11 1 1 

1 1 1 1 11 11 
1 1 1 1 111 111 

1 1 1 1 1111 1111 

Figure 6-9: Single-Point Vertex Example 

Line Drawing 

In. addition to all the functions described above, the blitter has a line-drawing mode. 
The line-drawing mode is selected by placing a 1 in bit 0 of BLTCON1, which causes 
redefinition of some of the other control bits in BLTCONO and BLTCONl. (See the 
description of the BLTCON registers in the appendix for the meanings of the other con
trol bits.) 

In line-drawing mode, the blitter has the following features: 

o Draws lines up to 1,024 pixels long (twice as big as the high-resolution screen). 

o Draws lines with regular or inverse video. 

o Draws solid lines or textured lines. 

o Draws special lines with one dot on each scan line, for use with area fill. 

Many of the blitter registers serve other purposes in line-drawing mode. These registers 
and their functions are itemized in table 6-2 for reference purposes. Consult the appen
dix for more detailed descriptions of the use of these registers and control bits in line
drawing mode.' 
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Table 6-2: Blitter Registers in Line-drawing Mode 

Register Bit Bit 
Name Number Name State Purpose 

BLTCONO 15,14,13,12 START Code for horizontal position 
of first pixel 

BLTCONO 11,10,9,8 USE 1011 Required for line-drawing 
BLTCON1 15,14,13,12 BSH 0 Starts texture at bit 0 
BLTCONI 5 Reserved 
BLTCONI 4,3,2 Octant select code 

(See figure 6-10 below.) 
BLTCON1 1 SING 0,1 Set for single-bit-width line 
BLTCON1 0 LINE 1 Enables line-drawing mode 
BLTADAT All 8000 Index required for line-drawing 
BLTBDAT All o to FFFF Line texture register 
BLTSIZE 5-0 w 02 Required for line-drawing 
BLTSIZE 15-6 h Line length up to 1024 
BLTAMOD All 2(2Y - 2X) * 
BLTBMOD All 2(QY) * 
BLTCMOD All Wid th of total image 
BLTDMOD All Width of total image 
BLTAPT All (2Y - X) * 
BLTCPT All Starting address of line 
BLTDPT All Starting address of line 

* Y and X are the height and width of the rectangle enclosing the line. 

OCTANTS IN LINE DRAWING 

Standard computer graphics texts, such as Newman and Sproul, discuss a system for 
dividing the Cartesian plane into eight regions called octants for purposes of line draw
ing. Figure 6-10 shows the numerical codes Amiga has assigned to each octant. The 
dotted lines in the figure represent the x-axis and y-axis. 

Line drawing based on octants is a simplification that takes advantage of symmetries 
between x and -x, y and -yo The octant code and several values derived from delta x 
and delta yare loaded into blitter control registers as shown in table 6-3. 
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(2)3 
1 

(1 ) 

(3) 
1 6 (0) 

5 4 (7) 
(4) 

2 0 
(5) (6) 

Figure 6-10: Octants for Line Drawing 

In figure 6-10, the number in parentheses is the octant number and the other number 
stands for bits 4, 3, and 2 of register BLTCONI as shown in table 6-3. Also see the 
table at the end of the description of BLTCONI in appendix A. 

Table 6-3: BLTCONI Code Bits for Octant Line Drawing 

BLTCONI Code Bits 
432 Octant # 

1 1 0 0 
o 0 1 1 
0 1 1 2 
1 1 1 3 
1 0 1 4 
1 0 0 5 
000 6 
100 7 
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Blitter Operations and System DMA 

The operations of the blitter affect the performance of the rest of the system. The fol
lowing sections explain how system performance is affected by blitter direct memory 
access (DMA) priority, DMA time slot allocation, bus sharing between the 68000 and the 
bit-plane, the operations of the blitter and Copper, and different playfield display sizes. 

BLITTER DMA PRIORITY 

The blitter performs its various data-fetch, modify, and store operations through D11A 
sequences, and it shares memory access with other devices in the system. Each device 
that accesses memory has a priority level assigned to it, which indicates its importance 
relative to other devices. 

Disk DMA, audio DMA, bit-plane DMA, and sprite DMA all have the highest priority 
level. Bit-plane D11A has priority over sprite DMA under certain circumstances. Each of 
these four devices is allocated a group of time slots during each horizontal scan of the 
video beam. If a device does not request one of its allocated time slots, the slot is open 
for other uses. These devices are given first priority because missed D11A cycles can 
cause lost data, noise in the sound output, or on-screen interruptions. 

The Copper has the next priority because it has to perform its operations at the ~ame 
time during each display frame to remain synchronized with the display beam sweeping 
across the screen. 

The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter 
is given the higher priority because it performs data copying, modifying, and line draw
ing operations operations much faster than the 68000. 

DMA TIME SLOT ALLOCATION 

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or 
memory access cycles. A memory cycle is approximately 280 ns in duration. The total 
of 227.5 cycles per horizontal line includes both display time and non-display time. Of 
this total time, 226 cycles are available to be allocated to the various devices that need 
memory access. 

The time-slot allocation per horizontal line is 
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o 4 cycles for memory refresh (assigned to odd-numbered slots) 

o 3 cycles for disk D:MA 

o 4 cycles for audio D11A (2 bytes per channel) 

o 16 cycles for sprite D11A (2 words per channel) 

o 80 cycles for bit-plane D11A (even- or odd-numbered slots according to the 
display size used) 

Figure 6-11 shows one complete horizontal scan line and how the clock cycles are 
allocated. 

Blitter Hardware 187 



DMA Time Slot Allocation/Horizontal line 

Decimal numbers above the Illustrations represent I~·resolutlon 
cycles. Decimal n:Jmbers below the .lIustratlons represent hIgh· 
resolution cyeies. Negative numbers mdlc'lte the sian of data 
felch for dIsplays that afe larger than normal. 

DeCImal numbers Inside the Illustrations represent the bit-plane 
for which the data IS being fetched. 

$10 

~_.M~;MC'RY REFRESH --+ ..... OIS;K OMA TIME .... t4--A'UOIIO 
OMATIME 

Data fetch start can only be speCified at even 
multiples of 8 clocks. ThiS 15 the clock poSition 
which should be speCified for the normal Width 
display. 120 word fetch for 320 pixel, 40 word 
fetch for 640 pUlel Width) 

Five clocks must occur before the data fetched for a particular 
position can appear on·screen. For example, It data fetch start 
tS $38, data will not be avatlable for display until clock number 
$45. It IS available at $45 because display processing does not 
begin until all of the btt·planes for a particular pixel have been 
fetched. 

• These operations only take slots If the associated operation is being performed. 
Note Copper Data Move instructions reQuITe 4 slots. 

Copper Walt instructions reQUire 6 slots. 

# ThiS cycle 0 appears to exclude one of the memory refresh cycles. This IS not the case. 
Actual system hardware demands certain speCtflc values for data fetch start and display start. 
Therefore thiS timing chart has been "adjusted" to match those reQuirements. 

S Indicates a hex number. 

Hardware stop Installed here. Data fetch cannot begm a"y sooner 
than cycle $18. ThiS allows the user to wipe oul most of the sprites 
.f deSired (by defmlng an extra'Wlde displayl bulleaves the audiO 
and disk DMA untouched. 

520 

as cycle 7 

D 320 mode Bit·PlaneOMA. by plane .. 

• 640 mode Blt·Plane DMA. by plane .. 

D Slots available fOf Blltter. Copper and 68000 • 

[I Sprite OMA t (2words/channeU 

Figure 6-11: DMA Time Slot Allocation 

Some spntes are unusable It the display starts early due 10 
an extra wardls) assocIated wllh a WIde display and Of 
hOrizontal scrolling. In thiS case, the blt·plane DMA sleals 
the cycles normally allocated to the sprites. as Illustrated 
above. 

A hardware data· fetch stop has been Inslalled at count SDa 
so as to prevent the bit· plane data· fetch from overrunning 
the time allotted for the memory refresh or disk OMA. 

mID AudiO DMA t (2 bytes/channel) 

~ DlskDMA* 

~ Memory Refresh 

End of 
HorIZontal 
Line Data 

Fetch Cycle 



BIT.PLANE/PROCESSOR BUS SHARING 

The 68000 uses only the even-numbered memory access cycles. The 68000 spends about 
half of a complete processor instruction time doing internal operations and the other half 
accessing memory. Therefore, the allocation of alternate memory cycles to the 68000 
makes it appear to the 68000 that it has the memory all of the time, and it will run at 
full speed. 

Some 68000 instructions do not match perfectly with the allocation of even cycles and 
cause cycles to be missed. If cycles are missed, the 68000 must wait until its next avail
able memory slot before continuing. However, most instructions do not cause cycles to 
be missed, so the 68000 runs at full speed most of the time if there is no blitter DMA 
interference. 

Figure 6-12 illustrates the normal cycle of the 68000. 

average 68000 cycle 

internal memory 
operation access 
portion portion 

odd cycle, even cycle, 
assigned to available to 

other devices the 68000 

Figure 6-12: Normal 68000 Cycle 

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted 
alternate memory cycles (if it is ready to ask for the cycle and is the highest priority 
item at the time). However, if there are more than four bit-planes, bit-plane DMA will 
begin to steal cycles from the 68000 during the display. 

During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160 
time slots will be taken by bit-plane DMA for each horizontal line. As you can see from 
figure 6-13, bit-plane DMA steals 50 percent of the open slots that the processor might 
have used if there were only four bit-planes displayed. 
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+ 

4 

* 
6 

- timing cycle -

+ 

2 3 

* 
5 

Figure 6-13: Time Slots Used by a Six-bit-plane Display 

Notes for figure 6-13: 

+ an open memory slot that the 68000 might use 

T+7 

I 1 

* a slot that cannot be used by the 68000 because of added bit-plane DMA 

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all 
of the available memory time slots during the display time just to fetch the 40 data 
words for each line of the four bit-planes (40 x 4 = 160 time slots). This effectively 
locks out the 68000 (as well as the blitter or Copper) from any memory access during the 
display. 

Figure 6-14 shows how the time slots are allocated for high-resolution bit-planes. 

T - timing cycle- T+7 

4 2 3 1 4 2 3 

Figure 6-14: Time Slots Used by a High-resolution Display 
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EFFECTS OF DIFFERENT DISPLAY SIZES 

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution 
mode or 640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched 
during the horizontal line display time. If you want to scroll a playfield, one extra data 
word per line must be fetched from the memory. 

Display size is adjustable (see chapter 3, "Playfield Hardware"), ~nd bit-plane DMA 
takes precedence over sprite DMA. As shown in figure 6-11, larger displays may block 
out one or more of the highest-numbered sprites, especially with scrolling. 

EFFECTS OF BLITTER OPERATION 

As mentioned above, the blitter normally has a higher priority than the processor for 
DMA cycles. There are certain cases, however, when the blitter and the 68000 can share 
memory cycles. If given the chance, the blitter would steal every available memory 
cycle. Display, disk, and audio DMA take precedence over the blitter, so it cannot block 
them from bus access. Depending on the setting of the blitter DMA mode bit, com
monly referred to as the "blitter-nasty" bit, the processor may be blocked from bus 
access. This bit is called BLTPRI (for "blitter has priority over processor") and is in 
register DMACONW. 

If BLTPRI is a 1, the blitter will keep the bus for every available memory cycle. This 
could potentially be every cycle. 

If BLTPRI is a 0, the DMA manager will monitor the 68000 cycle requests. If the 68000 
is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one 
cycle. 

Table 6-4 shows all of the possible operating modes of the blitter, along with the distri
bution of its memory access windows. The table shows three words of a blit (the first 
word, any middle word, and the last word) and· how bus activity occurs for this 
sequence. The following conventions are used in this table: 

o A, B, and C stand for the sources. 

o D stands for the destination. 

o Numerical suffixes indicate which word within a blit is being fetched. For 
example AO is the first memory word fetch; Al is any middle memory word 
fetch; and A2 is the last memory word fetch. 
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Table 6-4: Typical Blitter Cycle Sequence 

USE Code 
in Active 

BLTCONO Channels Cycle Sequence 

F A B 0 D AO BO 00 - Al Bl 01 DO A2 B2 02 Dl D2 
E A B 0 AO BO 00 Al Bl 01 A2 B2 02 
D A B D AO BO - Al Bl DO A2 B2 Dl - D2 
0 A B AO BO - Al Bl - A2 B2 
B A 0 D AO 00 - Al 01 DO A2 02 D1 - D2 
A A 0 AO 00 Al 01 A2 02 
9 A D AO - AI DO A2 Dl - D2 
8 A AO - Al - A2 
7 B 0 D BO 00 - Bl 01 DO - B2 02 Dl - D2 
6 B 0 BO 00 - Bl 01 - B2 02 
5 B D BO - Bl DO - B2 Dl - D2 
4 B BO - Bl - B2 
3 0 D 00 - 01 DO - 02 Dl - D2 
2 0 00 - 01 - 02 
1 D DO - Dl - D2 
0 none 

Notes for table 6-4: 

o No fill. 

o No competing bus activity. 

o Three-word blit. 

o Typical operation involves fetching all sources twice before the first destination 
becomes available. This is due to internal pipelining. Care must be taken with 
overlapping source and destination regions. 

Table 6-4 is only meant to be an illustration of the typical order of blitter cycles on the 
bus. Bus cycles are dynamically allocated based on blitter operating mode; competing 
bus activity from processor, bit-planes, and other DMA channels; and other factors. 
Commodore-Amiga does not guarantee the accuracy of or future adherence to this chart. 
We reserve the right to make product improvements or design changes in this area 
without notice. 
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Complete Blitter Example 

The following example sets up the blitter to clear a block of memory. This program 
assumes you have the required include files to get correct magic numbers. 

This code is meant to be only an example. Programmers who wish to use the blitter 
directly and who want their code to perform with the rest of the Amiga software must 
do the appropriate OwnBlitterO, DisownBlitterO, and WaitBlitO calls. See the 
Amiga ROM Kernel Manual for information about using these calls. 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/blit.i' 

xref _custom 
, 
jBusy-wait for the previous blit to complete 

WAITBLIT: 

, 

BTST 
BNE.S 
RTS 

#DMAB_BLTDQNE-8,DMACONR(Al) 
WAITBLIT 

j This routine uses a side affect in the blitter. lVhen each of the blits is 
jfinished, the pointer in the blitter is pointing to the next word to be blitted. 
jAO = pointer to first word to clear 
jO = number of even bytes to clear 

CLEARMEM: 
LEA _CUSTOM,Al jGet pointer to chip registers 
MOVE.L AO,BLTPTD(Al) jSet up destination to clear 
CLR.W BLTMDD(Al) jSet modulo to no-skip 
ASR.L #l,DO jConvert to number of words 
CLR.W BLTCONl(Al) jNo special modes 
MOVE.W #DEST,BLTCONO(Al) jMinterms = 0, enable only destination 

j This routine splits the blit into several parts to feed the blitter. 
j Firs t, the leftovers. 

MOVEQ #$3F,Dl 
AND.W DO,Dl 
BEQ.S LABELl 

SUB.L 
OR 
MOVE.W 

Dl,DO 
#$40,Dl 
Dl,BL TSIZE(Al) 

jExtract non-64-words-at-a-time part 
jEven up the blit with a small one first 

jMake it one row X leftover words 
j Trigger the blit 
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LABELl: 

MOVE.W 
AND.W 
BEQ.S 

LABEL2: 
SWAP 
BEQ.S 

LOOP: 
BSR 

MOVE 

DONE: 

RTS 

Note: 
#$FFCO,Dl 
DO,Dl 

the upper word of d1 is already zero 
jNow look at more upper bits 
jExtract 10 more bits 

LABEL2 
SUB.L 
BSR 
MOVE.W 

DO 
DONE 
CLR.W 

WAITBLIT 

Dl,DO 
WAITBLIT 
DO,BLTSIZE(Al) 

Dl 

jAny to do? 
jHow many 128-Kbyte blocks left 
i Wait for any previous blit to complete 
i Trigger next blit 

iGheck for any bits set in upper word 
j Will do blits 128 Kbytes at a time 

Need move for this to work on 68000 
Dl,BLTSIZE(Al) iTrigger a big blit 
SUBQ.W #1,DO iGould be a dbf 
BNE.S LOOP iAny more 128-Kbyte blits? 

Exit. Note: blit may still be in progress. 
The support to manage async blits is one of the 
reasons to use the system software from Amiga. 
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Blitter Block Diagram 

Figure 6-15 shows the basic building blocks for a single bit of a 16-bit-wide operation of 
the blitter. It does not cover the line-drawing hardware. 

1. The upper left corner shows how the first- and last-word masks are applied to 
the incoming A-source data. When the blit shrinks to one word wide, both the 
first- and last-word masks apply to the incoming data word. 

2. The shifter (upper right and center left) drawing illustrates how 16 bits of data 
is taken from a specified position within a 32-bit register, based on the A-shift or 
B-shift values shown in BPLCONO and BPLCONl. 

3. The minterm generator (center right) illustrates how the minterm select bits 
either allow or inhibit the use of a specific minterm. 

4. The drawing shows how the fill operation works on the data generated by the 
min term combinations. Fill operations can be performed simultaneously with 
other complex logic operations. 

5. At the bottom, the drawing shows that data generated for the destination can 
be prevented from being written to a destination by using one of the blitter con
trol bits. 

6. Not shown on this diagram is the logic for zero detection, which looks at every 
bit generated for the destination. If there are any I-bits generated, this logic 
indicates that the area of the blit contained at least one I-bit (zero detect is 
false ). 
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Figure 6-15: Blitter Block Diagram 
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Chapter 7 

SYSTEM CONTROL HARDWARE 

Introduction 

This chapter covers the control hardware of the Amiga system, including the following 
topics: 

o How playfield priorities may be specified relative to the sprites 
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o How collisions between objects are sensed 

o How system direct memory access (DMA) is controlled 

o How interrupts are controlled and sensed 

Video Priorities 

You can control the priorities of various objects on the screen to give the illusion of 
three dimensions. The section below shows how playfield priority may be changed rela
tive to sprites. 

FIXED SPRITE PRIORITIES 

You cannot change the relative priorities of the sprites. They will always appear on the 
screen with the lower-numbered sprites appearing in front of (having higher screen prior
ity than) the higher-numbered sprites. This is shown in figure 7-1. Each box represents 
the image of the sprite number shown in that box. 

I 7 
I 6 

I 5 -I 4 -I 3 l-
I 2 ro-I- 1 -0 r--
!-

Figure 7-1: Inter-Sprite Fixed Priorities 
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HOW SPRITES ARE GROUPED 

For playfield priority and collision purposes only, sprites are treated as four groups of 
two sprites each. The groups of sprites are: 

Sprites 0 and 1 
Sprites 2 and 3 
Sprites 4 and 5 
Sprites 6 and 7 

UNDERSTANDING VIDEO PRIORITIES 

The concept of video priorities is easy to understand if you imagine that four fingers of 
one of your hands represent the four pairs of sprites and two fingers of your other hand 
represent the two playfields. Just as you cannot change the sequence of the four fingers 
on the one hand, neither can you change the relative priority of the sprites. However, 
just as you can intertwine the two fingers of one hand in many different ways relative to 
the four fingers of the other hand, so can you position the playfields in front of or 
behind the sprites. This is illustrated in figure 7-2. 

In Front (Higher Priority) 

Playfields f 

Behind 

Figure 7-2: Analogy for Video Priority 
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Five possible positions can be chosen for each of the two "playfield fingers." For exam
ple, you can place playfield 1 on top of sprites 0 and 1 (0), between sprites 0 and 1 and 
sprites 2 and 3 (1), between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 
and 5 and sprites 6 and 7 (3), or beneath sprites 6 and 7 (4). You have the same possi
bilities for playfield 2. 

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the 
actual values you use to select the play field priority positions. See "Setting the Priority 
Con trol Register" below. 

You can also control the priority of playfield 2 relative to playfield 1. This gives you 
additional choices for the way you can design the screen priorities. 

SETTING THE PRIORITY CONTROL REGISTER 

This register lets you define how objects will pass in front of each other or hide behind 
each other. Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit rev
erses this relationship, making playfield 2 more important. You control the video priori
ties by using the bits in BPLCON2 (for "bit-plane control register number 2") as shown 
in table 7-1. 

Table 7-1: Bits in BPLCON2 

Bit 
Number Name Function 

15-7 Not used (keep at 0) 

6 PF2PRI Playfield 2 priority 

5-3 PF2P2 - PF2PO Playfield 2 placement with 
respect to the sprites 

2-0 PFIP2 - PFIPO Playfield 1 placement with 
respect to the sprites 

The binary values that you give to bits PFIP2-PFIPO determine where playfield 1 
occurs in the priority chain as shown in table 7-2. This matches the description given in 
the previous section. 
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Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1PO 

Value Placement 
(from most important to least important) 

000 PF1 SP01 SP23 SP45 SP67 

001 SP01 PF1 SP23 SP45 SP67 

010 SP01 SP23 PF1 SP45 SP67 

011 SP01 SP23 SP45 PF1 SP67 

100 SP01 SP23 SP45 SP67 PF1 

In this table, PF1 stands for playfield 1, and SP01 stands for the group of sprites num
bered 0 and 1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and 
5 as a group; and SP67 stands for sprites 6 and 7 as a group. 

Bits PF2P2-PF2PO let you position play field 2 among the sprite priorities in exactly the 
same way. However, it is the PF2PRI bit that determines which of the two playfields 
appears in front of the other on the screen. Here is a sample of possible BPLCON2 
register contents that would create something a little unusual: 

BITS 15-7 PF2PRI PF2P2-0 PF1P2-0 

VALUE Os 1 010 000 

This will result in a sprite/playfield priority placement of: 

PF1 SP01 SP23 PF2 SP45 SP67 

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or 
1; and sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of 
playfield 1 in any area where they overlap and where playfield 2 is not blocked by sprites 
o through 3. 
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Collision Detection 

You can use the hardware to detect collisions between one sprite group and another 
sprite group, any sprite group and either of the playfields, the two playfields, or any 
combination of these items. 

The first kind of collision is typically used in a game operation to determine if a missile 
has collided with a moving player. The second kind of collision is typically used to keep 
a moving object within specified on-screen boundaries. The third kind of collision detec
tion allows you to define sections of playfield as individual objects, which you may move 
using the blitter. This is called playfield animation. If one playfield is defined as the 
backdrop or playing area and the other play field is used to define objects (in addition to 
the sprites), you can sense collisions between the playfield-objects and the sprites or 
between the playfield-objects and the other playfield. 

HOW COLLISIONS ARE DETERMINED 

The video output is formed when the input data from all of the bit-planes and the 
sprites is combined into a common data stream for the display. For each of the pixel 
positions on the screen, the color of the highest priority object is displayed. Collisions 
are detected when two or more objects attempt to overlap in the same pixel position. 
This will set a bit in the collision data register. 

HOW TO INTERPRET THE COLLISION DATA 

The collision data register, CLXDAT, is read-only, and its contents are automatically 
cleared to 0 after it is read. Its bits are as shown. in table 7-3. 
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Table 7-3: CLXDAT Bits 

Bit 
Number Collisions Registered 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
9 Sprite 0 (or 1) to sprite 2 (or 3) 
8 Even bit-planes to sprite 6 (or 7) 
7 Even bit-planes to sprite 4 (or 5) 
6 Even bit-planes to sprite 2 (or 3) 
5 Even bit-planes to sprite 0 (or 1) 
4 Odd bit-planes to sprite 6 (or 7) 
3 Odd bit-planes to sprite 4 (or 5) 
2 Odd bit-planes to sprite 2 (or 3) 
1 Odd bit-planes to sprite 0 (or 1) 
o Even bit-planes to odd bit-planes 

The notes in parentheses in table 7-3 refer to collisions that will register only if you want 
them to show up. The collision control register described below lets you either ignore or 
include the odd-numbered sprites in the collision detection. 

Notice that in this table, collision detection does not change when you select either 
single- or dual-playfield mode. Collision detection depends only on the actual bits 
present in the odd-numbered or even-numbered bit-planes. The collision control register 
specifies how to handle the bit-planes during collision detect. 

HOW COLLISION DETECTION IS CONTROLLED 

The collision control register, CLXCON, contains the bits that define certain characteris
tics of collision detection. Its bits are shown in table 7-4. 
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Table 7-4: CLXCON Bits 

Bit 
Number Name Function 

15 ENSP7 Enable sprite 7 (OR with sprite 6) 
14 ENSP5 Enable sprite 5 (OR with sprite 4) 
13 ENSP3 Enable sprite 3 (OR with sprite 2) 
12 ENSP1 Enable sprite 1 (OR with sprite 0) 
11 ENBP6 Enable bit-plane 6 (match required for collision) 
10 ENBP5 Enable bit-plane 5 (match required for collision) 
9 ENBP4 Enable bit-plane 4 (match required for collision) 
8 ENBP3 Enable bit-plane 3 (match required for collision) 
7 ENBP2 Enable bit-plane 2 (match required for collision) 
6 ENBPI Enable bit-plane 1 (match required for collision) 
5 MVBP6 Match value for bit-plane 6 collision 
4 MVBP5 Match value for bit-plane 5 collision 
3 MVBP4 Match value for bit-plane 4 collision 
2 MVBP3 Match value for bit-plane 3 collision 
1 MVBP2 Match value for bit-plane 2 collision 
0 MVBP1 Match value for bit-plane 1 collision 

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd
numbered sprite of a pair of sprites. The even-numbered sprites always are included in 
the collision detection. Bits 11-6 let you specify whether to include or exclude specific 
bit-planes from the collision detection. Bits 5-0 let you specify the polarity (true-false 
condition) of bits that will cause a collision. For example, you may wish to register colli
sions only when the object collides with "something green" or "something blue." This 
feature, along with the collision enable bits, allows you to specify the exact bits, and 
their polarity, for the collision to be registered. 

NOTES 

This register is write-only. If all bit-planes are excluded (disabled), then a 
bit-plane collision will always be detected. 
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Beam Position Detection 

Sometimes you might want to synchronize the 68000 processor to the video beam that is 
creating the screen display. In some cases, you may also wish to update a part of the 
display memory after the system has already accessed the data from the memory for the 
display area. 

The address for accessing the beam counter is provided so that you can determine the 
value of the video beam counter and perform certain operations based on the beam posi· 
tion. Note, however, that the Copper is already capable of watching the display position 
for you and doing certain register-based operations automatically. Refer to "Copper 
Interrupts" below and chapter 2, "Coprocessor Hardware/' for further information. 

In addition, when you are using a light pen with this system, this same address is used 
to read the light pen position rather than the beam position. This is described fully in 
chapter 8, "Interface Hardware." 

USING THE BEAM POSITION COUNTER 

There are four addresses that access the beam position counter. Their usage is described 
in table 7-5. 
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Table 7-5: Contents of the Beam Position Counter 

VPOSR Read-only Read the high bit of the vertical 
position (V8) and the frame-type bit. 

Bit 15 LOF (Long-frame bit). Used to 
initialize interlaced displays. 

Bits 14-1 Unused 

Bit 0 High bit of the vertical position 
(V8). Allows PAL line counts (313) to 
appear in PAL versions of the Amiga. 

VHPOSR Read-only Read vertical and horizon tal 
position of the counter that is 
producing the beam on the screen 
(also reads the light pen). 

Bits 15-8 Low bits of the vertical 
position, bits V7-VO 

Bits 7-0 The horizontal position, bits H8-Hl. 
Horizontal resolution is 1/160th 
of the screen width. 

VPOSW Write only Bits same as VPOSR above. 

VHPOSW Write only Bits same as VHPOSR above. 
Used for counter synchronization 
with chip test patterns. 

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from 
and written to as long words, with the most significant addresses being VPOSR and 
VPOSW. 
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Interrupts 

This system :supports the full range of 68000 processor interrupts. The various kinds of 
interrupts generated by the hardware are brought into the peripherals chip and are 
translated into six of the seven available interrupts of the 68000. 

NO NMAS KABLE INTERRUPT 

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the 
current system. The raw interrupt lines of the 68000, IPL2 through IPLO, are brought 
out to the expansion connector and can be used to generate this level 7 interrupt for 
. debugging purposes. 

MAS KABLE INTERRUPTS 

Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip 
allow you to mask certain of these sources and prevent them from generating a 68000 
interrupt. 

USER INTERFACE TO THE INTERRUPT SYSTEM 

The system software has been designed to correctly handle all system hardware inter
rupts at levels 1 through 6. A separate set of input lines, designated INT2* and INT6* 1 

have been routed to the expansion connector for use by external hardware for interrupts. 
These are known as the external low- and external high-level interrupts. 

These interrupt lines are connected to the peripherals chip and create interrupt levels 2 
and 6, respectively. It is recommended that you take advantage of the interrupt 
handlers built into the operating system by using these external interrupt lines rather 
than generating interrupts directly on the processor interrupt lines. 

1 A * indicates an active low signal. 
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INTERRUPT CONTROL REGISTERS 

There are two interrupt registers, interrupt enable (mask) and interrupt request (status). 
Each register has both a read and a write address. 

The names of the interrupt addresses are 

INTENA 
Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA. 

INTENAR 
Interrupt enable (mask) read - read only. Reads contents of INTENA. 

INTREQ 
Interrupt request (status) - write only. Used by the processor to force a certain 
kind of interrupt to be processed (software interrupt). Also used to clear inter
rupt request flags once the interrupt process is completed. 

INTREQR 
Interrupt request (status) read - read only. Contains the bits that define which 
items are requesting interrupt service. 

The bit positions in the interrupt request register correspond directly to those 
same positions in the interrupt enable register. The only difference between the 
read-only and the write-only addresses shown above is that bit 15 has no mean
ing in the read-only addresses. 

SETTING AND CLEARING BITS 

Below are the meanings of the bits in the interrupt control registers and how you use 
them. 
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Set and Clear 

The interrupt registers, as well as the DMA control register, use a special way of select
ing which of the bits are to be set or cleared. Bit 15 of these registers is called the 
SETCLR bit. 

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to 
set and a 1 into position 15. 

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish 
to clear and a 0 into position 15. 

Positions 14-0 are bit-selectors. You write a 1 to anyone or more bits to select that bit. 
At the same time you write a 1 or 0 to bit 15 to either set or clear the bits you have 
selected. Positions 14-0 that have 0 value will not be affected when you do the write. If 
you want to set some bits and clear others, you will have to write this register twice 
(once for setting some bits, once for clearing others). 

Master Interrupt Enable 

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master 
interrupt enable bit. If this bit is a 0, it disables all other interrupts. You may wish to 
clear this bit to temporarily disable all interrupts to do some critical processing task. 

NOTE 

This bit is used for enable/disable only. It creates no interrupt request. 

External Interrupts 

Bits 13 and 3 of the interrupt registers are reserved for external interrupts. 

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic o. Bit 
13 generates a level 6 interrupt. 

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logi<: O. 

Bit 3 causes a level 2 interrupt. 
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Vertical Blanking Interrupt 

Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display 
frame. The system is often required to perform many different tasks during the vertical 
blanking interval. Among these tasks are the updating of various pointer registers, 
rewriting lists of Copper tasks when necessary, and other system-control operations. 

The minimum time of vertical blanking is 20 horizontal scan lines (begins at line 0 and 
ends at line 20). You also have control over where (after line 20) the display actually 
starts by using the DIWSTRT (display window start) register (see chapter 3, "Playfield 
Hardware"). This can extend the effective vertical blanking time. 

If you find that you still require additional time during vertical blanking, you can use 
the Copper to create a level 3 interrupt. This Copper interrupt would be timed to occur 
just after the last line of display on the screen (after the display window stop which you 
have defined by using the DIWSTOP register). 

Copper Interrupt 

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can 
change the content of any of the bits of this register, as it can write any value into most 
of the machine registers. However, this bit has been reserved for specifically identifying 
the Copper as the interrupt source. 

Generally, you use this bit when you want to sense that the display beam has reached a 
specific position on the screen, and you wish to change something in memory based on 
this occurrence. 

Audio Interrupts 

Bits 10 - 7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2, 
AUDl, and AUDO and are assigned to channels 3, 2, 1, and 0, respectively. 

This level 4 interrupt signals "audio block done." When the audio DMA is operating in 
automatic mode, this interrupt occurs when the last word in an audio data stream has 
been accessed. In manual mode, it occurs when the audio data register is ready to 
accept another word of data. 
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See chapter 5, "Audio Hardware," for more information about interrupt generation and 
timing. 

Blitter Interrupt 

Bit 6, BLIT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has 
completed the requested data transfer. The blitter is now ready to accept another task. 

This bit generates a level 3 interrupt. 

Disk Interrupt 

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts. 

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates 
a level 5 interrupt 

Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified 
disk DMA task that you have requested has been completed. This bit generates a level 1 
interrupt. 

More information about disk data transfer and interrupts may be found in chapter 8, 
"In terf ace Hard ware. " 

Serial Port Interrupts 

The following serial interrupts are associated with the specified bits of the interrupt 
registers. 

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data 
that is ready to read. This bit generates a level 5 interrupt. 

Bit 0, TBE (for "transmit buffer empty"), specifics that the output buffer of the UART 
needs more data and data can now be written into this buffer. This bit generates a level 
1 interrupt. 
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DMA Control 

Many different direct memory access (DMA) functions occur during system operation. 
There is a read address as well as a write address to the DMA register so you can tell 
which DMA channels are enabled. 

The address names for the DMA register are as follows: 

DMACONR - Direct Memory Access Control - read-only. 

DMACON - Direct Memory Access Control- write-only. 

The contents of this register are shown in table 7-5 (bit on if enabled). 
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Table 7-6: Contents of DMA Register 

Bit 
Number Name Function 

15 SET/CLR The set/reset control bit. See description of bit 
15 under "Interrupts" above. 

14 BBUSY Blitter busy status - read-only 

13 BZERO Blitter zero status - read-only. Remains 1 
if, during a blitter operation, the blitter output 
was always zero. 

12,11 Unassigned 

10 BLTPRI Blitter priority. Also known as "blitter-nasty." 
When this is a 1, the blitter has full (instead of 
partial) priority over the 68000. 

9 DMAEN DMA enable. This is a master DMA enable bit. It 
enables the DMA fol' all of the channels at bits 8-0. 

8 BPLEN Bit-plane DMA enable 

7 COPEN Coprocessor DMA enable 

6 BLTEN Blitter DMA enable 

5 SPREN Sprite DMA enable 

4 DSKEN Disk DMA enable 

3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0). 

For more information on using the DMA, see the following chapters: 

Sprites - chapter 4, "Sprite Hardware" 

Bit-planes - chapter 3, "Playfield Hardware" 

Blitter - chapter 6, "Blitter Hardware" 

Disk - chapter 8, "Interface Hardware" 

Audio - chapter 5, "Audio Hardware" 

Copper - chapter 2, "Coprocessor Hardware" 
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Chapter 8 

INTERFACE HARDWARE 

Introduction 

This chapter covers the ways in which the Amiga talks to the outside world, including 
the following features: 

o Mouse/joystick/light pen ports 
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o Disk controller 

o Keyboard 

o Parallel I/O interface 

o RS-232-C compatible serial interface (for external modems or serial devices) 

o RAM cartridge slot (for expansion to 512K bytes) 

o Expansion bus interface 

o Audio output jacks 

o Video output connectors (RGB, NTSC, RF modulator) 

Controller Port Interface 

On the side of the computer, there are two nine-pin connectors that can be used for 
many different kinds of controllers. Figure 8-1 shows one of the two computer connec
tors and the corresponding face-on view of the typical controller plug. 

Face View
Controller Plug 

Face View
Computer Connector 

Figure 8-1: Controller Plug and Computer Connector 
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READING THE CONTROLLER PORT 

Mouse controllers, joysticks, proportional controllers, and light pens use the same con
nector, but they sometimes have considerably different functions. Therefore, the pins 
function differently depending on the type of controller used. 

Mouse/Trackball Controllers 

The inputs for the mouse or trackball are the same as those for the joystick switches in 
these ways: 

o The joystick "right" and "back" switches are the same as the pins used for 
mouse or trackball horizontal motion detection. 

o The joystick "left" and "forward" switches are the same as the pins used for 
mouse or trackball vertical motion detection. 

Pulses enter these inputs from the mouse or trackball and are converted into an up 
count or a down count when motion occurs. In the following discussion only the mouse 
action is described; the trackball activity is identical. 

Direction of Motion versus Count 

Imagine that the mouse is being moved on the table over an exact image of the screen 
itself. The movements of the on-screen object controlled. by the mouse correspond 
exactly to the movements the user makes with the mouse itself (all directions of move
ment are exactly the same). 

The counter counts up when the mouse is moved to the right or "down" (toward you). 
The counter counts down when the mouse is moved to the left or "up" (away from you). 

The coordinates X,Y indicate the controlled object's position on the screen. The coordi
nates X=O, y=o are at the upper left-hand corner of the screen, and the coordinates 
X=Xmax, Y=Ymax are at the lower right-hand corner. 
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Readiug tke COunters 

The mouse/trackball counter contents can be accessed by reading register addresses 
named JOYODAT and JOYIDAT. These contain the counts for the left (0) and the 
right (1) controller ports. 

The contents of each of these 16-bit registers are as follows: 

Bits 15-8 
Bits 7-0 

Mouse/trackball vertical count 
Mouse/trackball horizontal count 

Counter Limitations 

These counters will "wrap around" in either the positive or negative direction. If you 
wish to use the mouse to control something that is happening on the screen, you must 
read the counters once each vertical blanking period and save the previous contents of 
the registers. Then you can subtract to determine direction of movement and speed. 

The counter contents must be read once each vertical blanking time to find out if the 
user moved the mouse since counters were last read. 

The mouse produces about 200 count pulses per inch of movement in either a horizontal 
or vertical direction. Vertical blanking happens once each 1/60th of a second. If you 
read the mouse once each vertical blanking period, you will most likely find a count 
difference (from the previous count) of less than 127. (Only if a user moves the mouse at 
a speed of more than 72 inches per second will it exceed this count-an unlikely hap
pening). 

If you subtract the current count from the previous count, the absolute value of the 
difference will represent the speed. The sign of the difference (positive or negative), 
along with the sign of the previous and current values, lets you determine which direc
tion the mouse is traveling. 

The example shown in table 8-1 treats both counts as unsigned values, ranging from 0 to 
255. A count of 100 pulses is measured in each case. 
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TaLk 8-t. Dcttfml~il1s ttle vueCt'iJn of the Mouse 

Previous Current 
Count Count Direction 

200 100 Up (Left) 
100 200 Down (Righ t) 
200 45 Down * 
45 200 Up ** 

Notes for table 8-1: 

* Because 200-45 = 155, which is more than 127, the true count must be 255 - ( 
200-45) = 100; and the direction is down. 

** 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count 
must be 255 + (-155) = 100; and the direction is up. 

There are two buttons on the Amiga mouse. However, the control circuitry supports 
mice and trackballs with as many as three buttons if desired. 

o Button 1 (left button on Amiga mouse) is connected to pin 6 of the controller 
port. Trigger-lines are read for each of the controller ports by reading PA7 
(port 1 fire button) or PA6 (port 0 fire button) of the odd-addressed 8520 peri
pheral ports. A logic state of 1 means "switch open." A logic state of 0 means 
"switch closed." 

o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller 
ports. It is read as one of the potentiometer ports. See "Reading Proportional 
Controllers" for more information. High resistance indicates "switch open." Low 
resistance indicates "switch closed." 

o Button 3, when used, is connected as the other proportional controller input. 
This is pin 5 of the controller ports. 

Interface Hardware 219 



Joystick Controllers 

The joystick controllers have four simple direction switches and one trigger button. The 
direction switches are connected to pins I, 2, 3, and 4 as FORWARD, BACK, LEFT, 
and RIGHT. The trigger button is connected to pin 6. 

The normal state of each of the switches is open. This places a logic 1 on each of the 
input lines. When a switch is closed, it is connected to ground (pin 8), placing a logic 0 
on the line. 

Reading the joystick input data logic states is not so simple, however, because the data 
registers for the joysticks are the same as the counters that are used for the mouse or 
trackball controllers. These are named JOYODAT (port 0) and JOYIDAT (port 1). 

Table 8-2 shows how to interpret the data once you have read it from these registers. 
The true logic state of the switch data in these registers is "1 = switch closed." 

Table 8-2: Interpreting Data from JOYODAT and JOYIDAT 

Data Bit Interpretation 

1 True logic state of "right" switch. 

9 True logic state of "left" switch. 

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0 
to obtain the logic state of the "back" switch. 

9 (XOR) 8 You must calculate the exclusive-or of bits 9 and 8 
to obtain the logic state of the "forward" switch. 

Proportional Controllers 

Each of the game controller ports can handle two variable-resistance input devices, also 
known as proportional input devices. This section describes how the positions of the 
proportional input devices can be determined. There are two common types of propor
tional controllers: the "paddle" controller pair and the X-Y proportional joystick. A 
paddle controller pair consists of two individual enclosures, each containing a single 
resistor and fire-button and each connected to a common controller port input connec
tor. The typical connection is as shown in figure 8-2. 
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LEFTPADDLE RIGHT PADDLE 

Resistive Element Resistive Element 'tV' T' 
Pin 7 Pin 9 Pin 7 Pin 5 

I-F;re Button-----1 I-F;re Button-----1 
Pin 3 Pin 4 

(All pin numbers refer to a common connection to a single controller input port.) 

Figure 8-2: Typical Paddle Controller Connection 

In an X-Y proportional joystick, the resistive elements are connected individually to the 
X and Y axes of a single controller enclosure (instead of being in separate enclosures). 
Typical connections are shown in table 8-3. 
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Table 8-3: Typical Controller COllllectiol1l:s 

Mouse, 
Trackball, Proportional X-Y Variable 

Driving Controller Proportional 
Pin Joystick Controller (Pair) Joystick 

1 Forward* V-pulse (unused) (unused) 

2 Back* H-pulse (unused) (unused) 

3 Left* VQ-pulse Left button Button 1 

4 Right* HQ-pulse Right button Button 2 

5 (unused) Button (3) Right POT POT X 
(if used) 

6 Button(l) Button(!) (unused) (unused) 

7 +5V +5V +5V +5V 

8 GNp GND GND GND 

9 Button(2) Button(2) Left POT POTY 
(if used) 

An asterisk (*) at the end of a name indicates active low. 

Reading Proportional Controller Buttons 

For the two-control paddle controllers, the left and right joystick inputs serve as the fire 
buttons for the left and right controllers. 

Interpreting Proportional Controller Position 

Interpreting the position of the controller requires some preliminary work. This is an 
activity normally done during the vertical blanking interval (and is part of the operating 
system function). 

During vertical blanking, you write a value into an address called POTGO. For a stan
dard X-Y joystick, this value is hex 0001. Writing to this register starts the operation of 
some special hardware that reads the potentiometer values and sets the values contained 
in the POT registers (described below) to zero. 
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Tbe read circuitry I:lt:1Ys iu a reset state for the first sevell or eight hOrlzolltal video SC:1l1 
lines. Following the reset interval, the circuit allows a charge to begin building up on a 
timing capacitor whose charge rate will be controlled by the position of the external con
troller resistance. For each horizontal scan line thereafter, the circuit compares the 
charge on the timing capacitor to a preset value. If the charge is below that value, one 
count is added to the counter for that POT. If it is above that value, the counter value 
will be held at the stopped value until the next POTGO is issued. 

Effects of Different Resistance on Charging Rate 

You normally issue POTGO at the beginning of a video screen, then read the values in 
the POT registers during the next vertical blanking period, just before issuing POTGO 
again. (Again note that this is an automatic feature of the operating system.) 

Nothing in the system prevents the counters from overflowing (wrapping past a count of 
255). However, the system is designed to insure that the counter cannot overflow within 
the span of a single screen. This allows you to know for certain whether an overflow is 
indicated by the controller. 

Although there are 262 or 263 possible horizontal scan lines on a single NTSC video 
screen, each of the POT counters is eight bits wide, which allows a maximum of 255 in 
any counter. This is why the control circuitry is delayed seven or eight horizontal scan 
lines-to limit the maximum POT count value to 255. 

Proportional Controller Registers 

The following registers are used for the proportional controllers: 

POTODAT - port 0 data (vertical/horizontal) 
POT1DAT - port 1 data (vertical/horizontal) 

Bit positions: 

Bits 15-8 POTOY value or POT1 Y value 
Bits 7-0 POTOX value or POT1X value 

All counts are reset to zero when POTGO is written. Counts- are normally read one 
screen after the scan circuitry is enabled. 
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Potentiometer Specifications 

The resistance of the potentiometers should be a linear taper. Based on the design of 
the integrating analog-to-digital converter used, the maximum resistance should be no 
more than 528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is 
based on a charge capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 mil
liseconds for charge to full value (one video frame time). 

Light Pen 

A light pen can be connected only to the left controller port (port 0). Its connections are 
not shown in table 8-3. The pins controller port pins normally used by a light pen are 
shown in table 8-4. 

Table 8-4: Light Pen Pin Usage 

Pin Number Usage 

7 +5V 
8 GND 
5 Pen-pressed-to-screen 
6 Capture beam position 

The signal called "pen-pressed-to-screen" is generally a single switch to ground, normally 
open, which is actuated by a switch in the nose of the light pen. Note that this switch is 
connected to one of the potentiometer inputs and must be treated as such. The signal 
called "capture beam position" is connected as the trigger switch of a normal joystick. 

The principles of light pen operation are as follows (assuming the light pen has been 
enabled): 

1. Just as the system exits vertical blank, the capture circuitry for the light pen is 
automatically enabled. 

2. The video beam starts to create the picture, sweeping from left to right for each 
horizontal line as it paints the picture from the top of the screen to the bottom. 

3. The light pen creates a trigger signal at the moment that the video beam passes 
the window in the nose of the pen. 
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4. This trigger signal tells the internal circuitry to capture and save the current 
contents of the beam register, VPOSR. This allows you to determine where the 
pen was placed by reading the exact horizontal and vertical value of the counter 
beam at the instant the beam passed the light pen. 

Reading the Light Pen Registers 

The light pen register is at the same address as the beam counter, VPOSR and 
VHPOSR. The bits are as follows: 

VPOSR: Bit 15 Long frame 
Bits 14-1 Unused 
Bit 0 V8 (most significant bit of vertical position) 

VHPOSR: Bits 15-8 V7-VO (vertical position) 
Bits 7-0 H8-Hl (horizontal position) 

The software can refer to this register set as a long word whose address is VPOSR. 

The positional resolution of these registers is as follows: 

Vertical 1 scan line in non-interlaced mode 
2 scan lines in interlaced mode 

Horizontal 2 low-resolution pixels in either 
high- or low-resolution 

To enable the light pen input, write a 1 into bit 3 of BPLCONO (bit-plane control regis
ter 0). Once the light pen input is enabled and the light pen issues a trigger signal, the 
value in VPOSR is frozen. (The counters still count; only the read value is frozen.) This 
freeze is released at the end of internal vertical blanking (vertical position 20). No single 
bit in the system can tell you that the light pen has been triggered, but it can be deter
mined as follows: 

1. Read (long) VPOSR twice. 

2. If both values are not the same, the light pen has not triggered since the last 
top-of-screen (V = 20). 
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3. If both values are the same, mask off the upper 15 bits of the 32-bit word and 
compare it with the hex value of $10500 (V =261). 

4. If the VPOSR value is greater than $10500, the light pen has not triggered since 
the last top-of-screen. If the value is less, the light pen has triggered and the 
value read is the screen position of the light pen. 

A somewhat simplified method of determining the truth of the light pen value involves 
instructing the system software to read the register only during the internal vertical 
blanking period of 0 < V 20: 

1. Read (long) VPOSR once, during the period of 0 < V 20. 

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value 
of $10500 (V =261). 

3. If the VPOSR value is greater than $10500, the light pen has not triggered since 
the last top-of-screen. If the value is less, the light pen has triggered and the 
value read is the screen position of the light pen. 

Adapting to Special Controllers 

The Amiga can read and interpret controllers other than the standard joystick or pro
portional controller by using the control lines built into the POTGO register (address 
DFF034) to redefine the functions of some of the controller port pins. 

Table 8-5 is a copy of part of the POTGO register bit description, paraphrased from 
appendix A of this manual. POTGO (DFF034) is the write-only address for the pot con
trol register. POTGOR (DFF016) is the read-only address for the pot control register. 
The pot-control register controls a four-bit bidirectional I/O port that shares the same 
four pins as the four pot inputs. 
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Table 8-5: POTGO Register 

Bit 
Number Name Function 

15 OUTRY Output enable for right port pin 9 
14 DATRY I/O data right port pin 9 
13 OUTRX Output enable for right port pin 5 
12 DATRX I/O data right port pin 5 
11 OUTLY Output enable for left port pin 9 
10 DATLY I/O data left port pin 9 
09 OUTLX Output enable for left port pin 5 
08 DATLX I/O data left port pin 5 
07-01 X Reserved for chip identification 
00 START Start pots (dump capacitors, start counters) 

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a 
four-bit input/output port. This provides you with the equivalent of two additional pins 
on each of the two controller ports for general purpose I/O, as shown in table 8-5. 

If you set any of the "OUT ... " bits high, it disconnects the potentiometer control circui
try from the port. The current state of the "DAT ... " pins in this register-lor O-will 
appear on the specified port pin. You set the state of the OUT ... and DAT ... pins by 
writing into this register through the POTGO address. There are large capacitors on 
these lines, and it can take up to 300 microseconds for the line to change state. 

To use this register as an input, sensing the current state of the pot pins, write all Os to 
POTGO. Thereafter you can read the current state by using read-only address POT
GOR. Any bits set as inputs will be affected by the START bit of the POTGO register. 
You can also use these signals for fire-buttons. To do this, drive the line high (set both 
OUT ... and DAT ... to 1). When the button is pressed, the line will be shorted to 
ground, and reading POTGOR will produce a O. If the button is not pressed, the read
ing will be 1. 

Disk Controller 

The disk controller in this system can handle four double-sided, 3 1/2- or 5 1/4-inch disk 
drives. A 3 1/2-inch drive is installed in the basic unit. The other drives are external to 
the main box. 
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Control of the disk operations IS distributed among several registers in the system. 
Among the control types are 

o Selection, motor control, sensing 

o Disk DMA channel control, DMA enable. 

o Disk data read/write. 

o Disk format control. 

o Interrupts generated. 

DISK SELECTION, CONTROL, AND SENSING 

The disk subsystem uses two 8520 ports plus one FLAGS interrupt port. The specific 
bits used are detailed in table 8-6. 

CIA A ($BFEOOl), port A, has four input bits allocated to the disk subsystem. CIA B 
($BFDOOO), port B, is entirely dedicated to output bits for the disk. 

Table 8-6· Disk Subsystem 

Port Pin Name Function 

CIA A PA5 DSKRDY* Disk ready (active low). 

CIA A PA4 DSKTRACKO* Disk heads currently positioned 
over track zero (active low). 

CIA A PA3 DSKPROT* Disk is write protected (active low). 

CIA A PA2 DSKCHANGE* Disk has been removed from 
the drive. The drives that support this 
signal latch it until the next time the 
heads are stepped (active low). 
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CIAB PB7 DSKMOTOR* Disk motor control (active low). This 
signal is nonstandard on the Amiga system. 
Each drive will latch the motor signal at 
the time its SELn* signal turns on. 
The disk drive motor will stay in this 
state until the next time SELn* turns on, 
at which time it will latch the new value 
of DSKMOTOR*. All software that selects 
drives should set up the motor signal before 
selecting any drives. The drive will 
"remember" the state of its motor when 
it is not selected. All drive motors turn 
off after system reset. 

CIAB PB6 DSKSEL3* Select drive 3 (active low). 

CIAB PBS DSKSEL2* Select drive 2 (active low). 

CIAB PB4 DSKSELl* Select drive 1 (active low). 

CIAB PB3 DSKSELO* Select drive 0 (internal drive) 
(active low). 

CIAB PB2 DSKSIDE* Specify a particular head of 
the disk. Zero implies the upper head. 

CIAB PBl DSKDIREC Specify the direction to seek 
the heads. Zero implies seek towards 
the center spindle. Track zero is 
at the outside of the disk. 

CIAB PBO DSKSTEP* Step the heads of the disk. 
This signal should always be used as 
a pulse (first low, then high). 
Leaving this line low while changing 
the SEL lines confuses the change logic 

CIAB FLAG DSKINDEX* Disk index pulse (BFDDOO, bit 4). 
Can be used to create level 6 interrupt 
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Disk DMA Channel Control 

Data is normally transferred to the disk by direct memory access (DMA). The disk 
DMA is controlled by four items: 

o Pointer to the area into which or from which the data is to be moved 

o Length of data to be moved by DMA 

o Direction of data transfer (read/write) 

o DMA enable 

Pointer to Data 

You specify the 19-bit-wide byte address from which or to which the data is to be 
transferred. The lowest bit (bit 0) of this address is treated as a O. (You cannot start 
data on an odd-byte boundary.) 

This address must be written into registers named DSKPTH and DSKPTL. DSKPTH 
gets the high three bits of the pointer, DSKPTL gets the low sixteen bits of the pointer. 
These registers are positioned at two consecutive word addresses on a long word boun
dary within the register space. This allows you to initialize both registers by a single 
write of a long word to the address of DSKPTH. 

Length, Direction, DMA Enable 

All of the control bits relating to this topic are contained in a single register, called 
DSKLEN. Its bits are shown in table 8-7. 
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· Table 8-7: DSKLEN Register 

Bit 
Number Name Usage 

15 DMAEN Disk DMA enable 
14 WRITE Disk write (RAM -+ disk if 1) 
13-0 LENGTH Number of words to transfer 

The bit called DMAEN and the system DMA control bit for the disk must be set in 
order to allow disk DMA to occur. See chapter 7, "System Control Hardware," for more 
information about system DMA controls. 

The hardware requites a special sequence in order to start DMA to the disk. This 
sequence prevents accidental writes to the disk. In short, the DMAEN bit in the 
DSKLEN register must be turned on twice in order to actually enable the disk DMA 
hardware. Here is the sequence you should follow: 

1. Set this register to $4000, thereby forcing the DMA for the disk to be turned off. 

2. Put the value you want into the DSKLEN register. 

3. Write this value again into the DSKLEN register. This actually starts the 
DMA. 

4. Mter the DMA is complete, set the DSKLEN register back to $4000, to prevent 
accidental writes to the disk. 

As each data word is transferred, the LENGTH value is decremented. As each transfer 
occurs, the value of the pointer DSKPTH, DSKPTL is incremented. This points to the 
area where the next word of data will be written or read. When the LENGTH value 
counts down to 0, the transfer stops. 

The recommended method of reading from the disk is to read an entire track into a 
buffer and then search for the sector(s) that you want. With this process you need to 
read from the disk only once for the entire track. In addition, there are no time-critical 
sections in reading this way, so that other high-priority subsystems (such as graphics or 
audio, both of which have stringent real time constraints) are allowed to run. 
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If you have too little memory for track buffering (or for some other reason decide not to 
read a whole track at once), the disk hardware supports a limited set of sector-searching 
facilities. There is a register that may be polled to examine the disk input stream. 

There is a hardware bug that causes the last three bits of data sent to the disk to be 
lost. Also, the last word in a disk-read DMA operation may not come in (that is, one 
less word may be read than you asked for). 

OTHER REGISTERS IN DISK OPERATIONS 

A number of other registers are also associated with disk operations, as specified below. 

DSKBYTR - Disk Data Byte and Status Read 

This register is the disk-microprocessor data buffer. In read mode, data from the disk is 
loaded into this register one byte at a time. As each byte is received into the register, 
the BYTEREADY bit is set true. BYTEREADY is cleared each time the DSKBYTR 
register is read. 

DSKBYTR is the register normally used by system software to synchronize the processor 
to the disk rotation before issuing a read or write under DMA control. The bits are 
shown in table 8-8. 
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Table 8-8: DSKBYTR Register 

Bit 
Number Name Function 

15 BYTEREADY Indicates that this register contains 
a valid byte of data (reset by 
reading this register). 

14 DMAON The DMA bit (in DSKLEN) is enabled 
and the DMACON bits are on, too. All 
DMA bits must be on for this to be true. 

13 DISKWRITE This disk write bit (in DSKLEN) is enabled. 

12 WORDEQUAL Indicates the DISKSYNC register equals the 
disk input stream. This bit is true only 
while the input stream matches the sync 
register (as little as two microseconds). 

11-8 Unused 

7-0 DATA Disk byte data. 

ADKCON and ADKCONR - Audio and Disk Control Register 

ADKCON is the write address and ADKCONR is the read address for this register. The 
bottom eight bits of the register are used for the audio circuitry. The other bits are 
shown in table 8-9. 
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Table 8-9: ADKCON and ADKCONR Register 

Bit 
Number Name Function 

15 CLR/SET Same use as in the DMA enable register. 

Bit 15 must be a 1 if the 
register bits are to be set. 
Bit 15 is a 0 if the bits 
are to be cleared. 

14 PRECOMP1 MSB of Precomp specifier 
13 PRECOMPO LSB of Precomp specifier 

Value of 00 selects none. 
Value of 01 selects 140 ns. 
Value of 10 selects 280 ns. 
Value of 11 selects 560 ns. 

12 MFMPREC Value of 0 selects GCR Precomp. 
Value of 1 selects MFM Precomp. 

11 UARTBRK Value of 1 forces the output of the Paula 
special chip's serial port to 0 (an RS-232-C break). 

10 WORD SYNC Value of 1 enables synchronizing and starting 
of DMA on disk read of a word. The word on which 
to synchronize must be written into the DSKSYNC 
address (DFF07E). 

9 MSBSYNC Value of 1 enables sync on MSBit (GCR). 

8 FAST Value of 1 selects two microseconds 
per bit cell (usually MFM), 0 selects four 
microseconds per bit (usually GCR). 

7-4 ATPER3-0 Audio attach-period controls (not disk-related). 

3-0 ATVOL3-0 Audio attach-volume controls (not disk-related). 

One form of GCR format is the format used by the Apple[tm] computer. Data bytes on 
Apple-formatted disks always have the most significant bit set to a 1. When reading a 
GCR formatted disk, the software must use a translate table called a nibble-izer to 
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assure that all data written to the disk conforms with this bit-setting. Bit 9, when a I, 
tells the disk controller to look for this sync bit on every disk byte. 

DSKSYNC - Disk Input Synchronizer 

The DSKSYNC register is used to synchronize the input stream. If WORDEQUAL is 
enabled in ADKCON, no data is transferred to memory until a word is found in the 
input stream that matches the word in the DSKSYNC register. In addition, the 
DSKSYNC bit in INTREQ is set when the input stream matches the DSKSYNC regis
ter. The DSKSYNC bit in INTREQ is independent of the WORD EQUAL enable. 

DSKDAT and DSKDATR Disk DMA Data Registers 

These register addresses are for testing purposes only. 

DSKDAT is write-only and DISKDATR is a read-only, early-read dummy address. This 
register is the disk DMA data buffer. It contains two bytes of data that are either sent 
(written) to or received (read) from the disk. The write mode is enabled by bit ]4 of the 
DSKLEN register. The DMA controller automatically transfers data to or from this 
register and RAM. 

DISK INTERRUPTS 

The disk controller can issue two kinds of interrupts: 

o DSKSYNC (level 5, INTREQ bit l2)-the input stream matches the DSKSYNC 
register. 

o DSKBLK (levell, INTREQ bit 1)-disk DMA has completed. 

Each of these is explained further in the sections titled "Length, Direction, DMA 
Enable" and "Other Registers Involved with Disk Operations." See chapter 7, "System 
Control Hardware," for more information about interrupts. 
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The Keyboard 

The keyboard is interfaced to the system through one pair of lines connected to the 
odd-addressed 8520 CIA chip. These lines are CNT, for the keyboard clock (input from 
keyboard), and SP, for keyboard data (input or output). 

HOW THE KEYBOARD DATA IS RECEIVED 

The CNT line is used as a clock for the keyboard. On each transition of this line, one 
bit of data is clocked in from the keyboard. The keyboard sends this clock when each 
data bit that is to be sent is stable on the SP line. The clock is an active low pulse. 
The rising edge of this pulse clocks in the data. 

The 8520 is set up to use the CNT line as a clock and the SP line as a data input to an 
internal serial shift register. Appendix F contains most of the data sheet for the 8520 
and provides more information for interested parties. 

After a data byte has been received from the keyboard, an interrupt (from the 8520) is 
issued to the processor. The keyboard waits for a handshake signal from the system 
before transmitting any more keystrokes. (The handshake is issued by the processor 
pulsing the SP line low for a minimum of 75 microseconds.) 

If another keystroke is received before the previous one has been accepted by the proces
sor, the keyboard-processor (internal to keyboard) holds a type-ahead buffer apprOXI
mately 10 "keycodes" long. (Keycodes are explained in the next section). 

TYPE OF DATA RECEIVED 

The keyboard data is not received in the form of ASCII characters. Instead, for max
imum versatility, it is received in the form of keycodes. These codes include not only 
the down-transition of the key, but also the up-transition. This allows your software to 
use both sets of information to determine exactly what is happening on the keyboard. 

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke 
of the key transmits the value shown here. An upstroke of the key transmits this value 
plus $80. The picture of the keyboard at the end of this section shows the positions that 
correspond to the description in the paragraphs below. 
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The 128 possible key codes are arranged into the logical groups shown below. 

00-3F hex 

These are key codes assigned to specific positions on the main body of the keyboard and 
the numeric pad that contain graphic keys (that is, "A", but not "Tab"). The key 
positions would generally be labeled with country-dependent keys. These keycodes are 
best described positionally as shown in figure 8-3 at the end of the keyboard section. 

40-4F hex 

These are key codes with specific meanings common to most keyboards: 

40 Space 
41 Backspace 
42 Tab 
43 Enter (numeric pad) 
44 Return 
45 Escape 
46 Delete 
4A Numeric pad 
4C Cursor up 
4D Cursor down 
4E Cursor forward 
4F Cursor backward 

50-SF hex 

Key codes for function keys: 

50-59 Function keys F1-FIO 
SF Help 
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60-67 hex 

Ke) codes for qualifier keys: 

60 Left shift 
61 Right shift 
62 Caps lock 
63 Control 
64 Left ALT 
65 Right ALT 
66 Left Amiga (command) 
67 Right Amiga (command) 

68-77 hex 

Unassigned. 

FO-FF hex 

These key codes are used for 6500/01-68000 communication, and are not associated with 
a keystroke. They have no key transition flag, and are therefore described completely 
by 8-bit codes: 

F9 Last key code bad, next key is same code retransmitted 
FA Keyboard key buffer overflow 
FC Keyboard self-test fail 
FD Initiate power-up key stream (for stuck keys) 
FE Terminate key stream (from FD) 

These key codes may be filtered out by the drivers. 

238 Interface Hardware 



LIMITATIONS OF THE KEYBOARD 

The Amiga keyboard (see figure 8-3) is a matrix of rows and columns, with a key switch 
at each intersection. Because of this, it is subject to a phenomenon called "ghosting." 

Ghosting means that certain combinations of keys pressed simultaneously will cause 
extra ("ghost") key codes to be transmitted. For example, press "A" and "S" simultane
ously and hold them down. Notice that "A" and "S" are transmitted. While still hold
ing them down, press "Z" and observe that both "X" and "Z" are transmitted. In this 
case, "X" is a ghost key. 

The keyboard is designed so that this will never happen during normal typing, only 
when unusual key combinations like the one just described are pressed. Normally, the 
keyboard will appear to have "N-key rollover," which means that you will run out of 
fingers before generating a ghost character. 

ESC 

45 

00 
TAB 

CTRL 

63 
SHIFT 

NOTE 

There are seven keys that are not part of the matrix, and thus do not contri
bute to generating ghosts. These keys are: CTRL (control), the two SHIFT 
keys, the two Amiga keys, and the two ALT keys. 

Fl 

1 8 

3D 3E 
HELP 4 5 

20 2E 
1 2 

10 1E 
0 

31 OF 
A .it ALT ENTER 

9 

3F 
6 

2F 
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1F 

3C 

64 66 40 67 4A 43 

Figure 8-3: The Amiga Keyboard, Showing Keycodes in Hexadecimal 
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Parallel Input/Output Interface 

The general-purpose parallel interface is a 25-pin male connector on the back panel of 
the computer. This connector is generally used for a parallel printer. 

For pin connections, see appendix E. 

Serial Interface 

A 25-pin D-type female connector on the back panel of the computer serves as the gen
eral purpose serial interface. This connector can drive a wide range of different peri
pherals, including an external modem or a serial printer. 

For pin connections, see appendix E. 

INTRODUCTION TO SERIAL CIRCUITRY 

The circuit that controls the serial link to the outside world is called a UART, which is 
short for Universal Asynchronous Receiver/Transmitter. The UART is able to commun
icate at baud rates (bit-rate of transmission of data) that you preset. It can receive or 
send data with a programmable length of eight or nine bits. 

The UART is also capable of detecting overrun errors, which occur when some other sys
tem sends in data faster than you remove it from the data-receive register. There are 
also status bits that you can read to find out when the receive buffer is full or when the 
transmit buffer is empty. An additional status bit is provided that indicates "all bits 
sent." All of these topics are discussed below. 

SETTING THE BAUD RATE 

Baud rate (rate of transmission) is controlled by the contents of the register named 
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits. If you consider the con
tents of these bits to be the number N, then N+1 color clocks (each 279.4 ns) occur 
between samples of the state of the input pin (for receive) or between transmissions of 
output bits (in the transmit mode). 
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SETTING THE RECEIVE MODE 

The number of bits that are to be received before the system tells you that the receive 
register is full may be defined either as eight or nine. In either case, the receive circuitry 
expects to see one start bit, eight or nine data bits, and at least one stop bit. 

Receive mode is set by bit 15 of SERPER. Bit 15 is a 1 if if you chose nine data bits for 
the receive-register full signal, and a 0 if you chose eight data bits. The normal state of 
this bit for most receive applications is a o. 

SERPER is a write-only register. 

CONTENTS OF THE RECEIVE DATA REGISTER 

The serial input data-receive register is 16 bits wide. It contains not only the input data 
received but also certain status bits, which are explained below. 

The data bit positions defined for read-data are taken from the "back-up" register, 
which is connected to the receive-data serial shift register. 

The data is received, one bit at a time, into a serial-to-parallel shift register. When the 
proper number of bits has been received, the contents of this register are transferred to 
the serial data read register (SERDATR) shown in table 8-10, and you are signaled that 
there is data ready for you. 

The back-up register is called that because immediately after the transfer of data takes 
place, the receive shift register again becomes ready to accept new data. After receiving 
the receiver-full interrupt, therefore, you will have up to one full character-receive time 
(8 to 10 bit times) to accept the data and clear the interrupt. 

Table 8-10 shows the definitions of the various bit positions within SERDATR. 
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Bit 
Number Name 

15 OVRUN 

14 RBF 

13 TBE 

12 TSRE 
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Table 8-10: SERDATR Register 

Function 

OVERRUN bit 
(Mirror-also appears in the interrupt request 
register.) Indicates that another byte of data 
was received before the previous byte was picked 
up by the processor. To prevent this condition, 
it is necessary to reset the RBF bit (bit 11) 
(receive-buffer-full) in the interrupt request 
register (INTREQ). 

READ BUFFER FULL 
(Mirror-also appears in the interrupt request 
register.) When it is a 1, it says that there is 
data ready to be picked up by the processor. 
After reading the contents of this data register, 
you must reset the RBF bit in INTREQ to prevent 
an overrun. 

TRANSMIT BUFFER EMPTY 
(Not a mirror-interrupt occurs when the 
buffer becomes empty.) When it is a 1, 
the data in the output data register (SERDAT) 
has been transferred to the serial output shift 
register, so SERDAT is ready to accept another 
output word. This is also true when the buffer 
is empty. 

This bit is normally used for full-duplex operation. 

TRANSMIT SHIFT REGISTER EMPTY 
When this bit is a 1, the output shift register 
has completed its task, all data has been 
transmitted, and the register is now idle. 
If you stop writing data into the output 
register (SERDAT), then this bit will 
become a 1 after both the word currently 
in the shift register and the word 
placed into SERDAT have been transmitted. 

This bit is normally used for half-duplex operation. 



11 RXD Direct read of RXD pin on Paula chip. 

10 Not used at this time 

9 STP Stop bit if 9 data bits are specified for 
receive. 

8 STP Stop bit if 8 data bits are specified for 
receive, 

OR 
DB8 9th data bit if 9 bits are specified for 

receIve. 

7-0 DB7-DBO Low 8 data bits of received data. Data 
is TRUE (data you read· is the same 
polarity as the data expected). 

HOW OUTPUT DATA IS TRANSMITTED 

You send data out on the transmit lines by writing into the serial data output register 
(SERDAT). This register is write-only. 

Data will be sent out at the same rate as you have established for the read, and this 
data is contained in the serial data period register (SERPER) shown above. Immediately 
after you write the data into this register, the system will begin the transmission at the 
baud rate you selected. 

At the start of the operation, this data is transferred from SERDAT into a serial shift 
register. When the transfer to the serial shift register has been completed, SERDAT can 
accept new data; the TBE interrupt signals this fact. 

Data will be moved out of the shift register, one bit during each time interval, starting 
with the least significant bit. The shifting continues until, following the last shift, the 
UART detects the condition "shift-register-empty," which means that only Os remain in 
the register. 

SERDAT is a 16-bit register that allows you to control the format (appearance) of the 
transmitted data. To form a typical data sequence, such as one start bit, eight data 
bits, and two stop bits, you write into SERDAT the contents shown in figures 8-4 and 
8-5. 
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15 987 o 

o 0 0 0 0 0 0 1 j.-- 8 bits data ~I 

Data gets shifted out this way. 

Figure 8-4: Starting Appearance of SERDAT and Shift Register 

15 987 o 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 --".1 1 
----------------- one bit 

All zeros from last shift-

Figure 8-5: Ending Appearance of Shift Register 

The register stops shifting and signals "shift register empty" (TSRE) when there is a 1 
bit present in the bit-shifted-out position and the rest of the contents of the shift regis
ter are Os. When new nonzero contents are transferred into this register, shifting begins 
again. 

SPECIFYING THE REGISTER CONTENTS 

You should write the data you wish to transmit as the low 8 (or 9 if you wish) bits of 
this output register (SERDAT). Above the data bits (in bits 8 and above or bits 9 and 
above) you write 1 bits for however many stop bits you transmit with the data. 
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Normally, you send either one or two stop bits. (See figure 8-4.) 

The transmission of the start bit is independent of the contents of this register. One 
start bit is automatically generated before the first bit (bit 0) of the data is sent. 

Writing this register starts the data transmission. If this register is written with all 
zeros, no data transmission is initiated. 

Audio Output Connections 

The Amiga has two different forms of audio output for the audio channels: 

o Stereo output jacks 

A pair of "RCA" jacks, designed to be connected to a stereo amplifier. 

o RF-Audio 

The channel 3/4 RF modulator will provide sound through the speaker of your 
television set when the television is used to provide the computer's display. 
Both channels of audio are provided at this connector. However, the RF modu
lator on initial shipments of Amiga computers combines the signals and 
transmits monaural sound. 

Display Output Connections 

A 23-pin connector on the back of the Amiga contains signals for two different types of 
video output. A separate cable assembly will be made up for each different type of 
video. The types are listed below. 

o RGB Monitors ("analog RGB"). Provides four outputs, specifically red (R), 
green (G), blue (B), and sync. They can generate up to 4,096 different colors 
on-screen simultaneously using the circuitry presently available on the Amiga. 

o Digital RGB Monitors. Provides four outputs, distinct from those shown above, 
named red (R), green (G), blue (B), half-intensity (I), and sync. All output levels 
are logic levels (0 or 1). These outputs allow up to 15 possible color combina
tions, where the values 0000 and 0001 map to the same output value. (Half 
intensity with no color present is the same as full intensity, no color.) 
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Appendix A 

Register Summary-Alphabetical Order 

This appendix contains a short summary, in alphabetical order, of the register set and 
the usages of the individual bits. 

The addresses shown here are used by the special chips (called "Agnus", "Denise", and 
"Paula") for transferring data among themselves. Also, the Copper uses these addresses 
for writing to the special chip registers. To write to these registers with the 68000, cal
culate the 68000 address using this formula: 

68000 address = (chip address) + $DFFOOO 

For example, for the 68000 to write to ADKCON (address = $09E), the address would 
be $DFF09E. 

A-I 



Read/ 
Register Address write 

Agnus/ 
Denise/ 
Paula Function 

AOKCON 
ADKCONR 

AUDxLCH 
AUDxLCL 

AUDxLEN 

09E 
010 

W 
R 

P Audio, disk, control write 
P Audio, disk, control read 

BIT# USE 

15 SET/CLR Set/clear control bit. Determines if bits 
written with a 1 get set or cleared. Bits 
written with a zero are always unchanged. 

14-13 PRECOMP 1-0 CODE PRECOMP VALUE 

12 MFMPREC 
11 UARTBRI< 
10 hURDSYNC 

00 none 
01 140 ns 
10 280 ns 
11 560 ns 

( l=MFM precorrp O=CX:R preconp) 
Forces a UART break (clears TXO) if true. 
Enables disk read synchronizing on a word 
equal to DISK SYNC CODE, located in 
address (3F) *2. 

09 MSBSYNC Enables disk read synchronizing on the MSB 
(most signif bit) . Appl type OCR. 

08 FAST Disk data clock rate control 1=fast(2us) 0=slow(4us). 
(fast for MFM, slow for MFM or OCR) 

07 USE3PN Use audio channel 3 to modulate nothing. 
06 USE2P3 Use audio channel 2 to modulate period of channel 3. 
05 USE1P2 Use audio channell to modulate period of channel 2. 
04 USEOP1 Use audio channel 0 to modulate period of channell. 

03 USE3VN Use audio channel 3 to modulate nothing. 
02 USE2V3 Use audio channel 2 to modulate volume of channel 3. 
01 USE1V2 Use audio channell to modulate volume of channel 2. 
00 USEOV1 Use audio channel 0 to modulate volume of channel 1. 

NOTE: I f both period and volume are modulated on the 
same channel, the period and volume will be alternated. 
First word xxxxxyyx V6-VO , Second word PIS-PO (etc) 

OAO W A Audio channel x location (high 3 bits) 
0A2 W A Audio channel x location (low 15 bits) 

This pair of registers contains the 18 bit starting address 
(location) of audio channel x (x=O,l,2,3) DMA data. 
This is not a pointer register and therefore needs 
to be reloaded only if a different memory location 1s to 
be outputted. 

OA4 W P Audio channel x length 
This register contains the length (number of words) of 
audio channel x DMA data. 

AUDxPER 

AUDxVOL 

AUDxDAT 

BLTxPTH 
BLTxPTL 

BLTxK>D 

OAG W P Audio channel x Period 

OAB 

This register contains the period (rate) of 
audio channel x DMA data transfer. 
The minilmlm period is 124 color clocks. This means 
that the smallest nwnber that should be placed in 
this register is 124 decimal. This corresponds to 
a maxilmlm sanple frequency of 28.86 khz. 

W P Audio channel x volume 
This register contains the volume setting for 
audio channel x. Bits 6,5,4,3,2,1,0 specify 65 
linear volume levels as shown below. 

Bit# Use 

15-07 
06 
05-00 

Not used 
Forces volume to max (64 ones, no zeros) 
Sets one of 64 levels (OOOOOO=no output 
(111111=63 Is, one 0) 

OAA W P Audio channel x data 
This register is the audio channel x (x=O,l,2,3) 
DMA data buffer. It contains 2 bytes of data that 
are each 2' s corrplement and are outputted 
sequentially (with digital-to-analog conversion) 
to the audio output pins. (LSB = 3 MY) The DMA 
controller automatically transfers data to this 
register from RAM. The processor can also write 
directly to this register. When the DMA data 1s 
finished (words outputted=length) and the data in 
this register has been used, an audio channel 
interrupt request is set. 

050 W A Blitter pointer to x (high 3 bits) 
052 W A Blitter pointer to x (low 15 bits) 

This pair of registers contains the 18-bit address 
of blitter source (x=A,B,C) or destination (x=D) 
DMA data. This pointer must be preloaded with the 
starting address of the data to be processed by 
the blitter. After the blitter is finished, it 
will contain the last data address (plus increment 
and modulo). 
LINE DRAW BLTAPTL is used as an accumulator 
LINE DRAW register and II1lSt be preloaded with 
LINE DRAW the starting value of (2Y-X) where 
LINE DRAW Y/X is the line slope. BLTCPT and 
LINE DRAW BLTDPT (both H and L) must be 
LINE DRAW preloaded with the starting address 
LINE DRAW of the line. 

064 W A Blitter modulo x 
This register contains the modulo for blitter 
source (x=A,B,C) or destination (x=D). A modulo 
is a number that is automatically added to the 
address at the end of each line, to make the 



BLTAFWM 
BLTALWM 

BLTxDAT 

BLTDDAT 

address point to the start of the next line. Each 
source or destination has its own modulo, allowing 
each to be a different size, while an identical 
area of each is used in the bUtter operation. 
LINE DRAW BLTAMOD and BLTBMOD are used as slope 
LINE DRAW storage registers and must be preloaded 
LINE DRAW with the values (4Y-4X) and (4Y) 
LINE DRAW respectively. Y/X= line slope. 
LINE DRAW BLTCMOD and BLTDMOD must both be 
LINE DRAW pre loaded with the width (in bytes) 
LINE DRAW of the image into which the line is 
LINE DRAW being drawn (normally two times the 
LINE DRAW screen width in words) • 

044 W A Blitter first-word mask for source A 
046 W A Blitter last-word mask for source A 

The patterns in these two registers are ANDed with 
the first and last words of each line of data from 
source A into the bUtter. A zero in any bit 
overrides data from source A. These registers 
should be set to all Is for fill mode or for 
line-drawing mode. 

074 W A Blitter source x data register 
This register holds source x (x=A,B,C) data for 
use by the bUtter. It is normally loaded by the 
bUtter DMA channel; however, it may also be 
preloaded by the microprocessor. 
LINE DRAW BLTADAT is used as an index register 
LINE DRAW and must be preloaded with 8000. 
LINE DRAW BLTBDAT is ,used for texture; it must 
LINE DRAW be preloaded with E'E' if no texture 
LINE DRAW (soUd line) is desired. 

Blitter destination data register 
This register holds the data resulting from each 
word of blitter operation until it is sent to a 
RAM destination. This ,is a dllllll1Y address and 
cannot be read by the micro. The transfer is 
automatic during blitter operation. 

BLTCONO 040 W A BUtter control register 0 
BLTCONI 042 W A Blitter control register 1 

These two control registers are used together to 
control bUtter operations. There are two basic 
modes, area and line, which are selected by bit 
o of BLTCONl, as shown below. 

AREA MJDE ("normal") 
-------------------------
BI1'# BLTCONO BLTCON1 
---- -------
15 ASH3 BSH3 
14 ASH2 BSH2 
13 ASH! BSH1 
12 ASAO BSHO 
11 USEA X 
10 USEB X 
09 USEC X 
08 USED X 
07 LE'7 X 
06 LE'6 X 
05 LE'S X 
04 LE'4 EFE 
03 LE'3 IE'E 
02 LE'2 E'CI 
01 LE'1 DESC 
00 LE'O LINE (=0) 

ASH3-0 
BSH3-0 
USEA 
USEB 
USEC 
USED 
LE'7-0 
EFE 
IFE 
E'CI 
DESC 
LINE 

Shift value of A source 
Shift value of B source 
Mode control bit to use source A 
Mode control bit to use source B 
Mode control bit to use source C 
Mode control bit to use destination D 
Logic function mlnterm select lines 
Exclusive fill enable 
Inclusive fill enable 
Fill carry input 
Descending (decreasing address) control bit 
Line mode control bit (set to 0) 

LINE DRAW LINE MODE (line draw) 
LINE DRAW ------------------------------
LINE DRAW BI1'# BLTCONO BLTCONI 
LINE DRAW ---- -------
LINE DRAW 15 START3 TEXTURE3 
LINE DRAW 14 START2 TEXTURE2 
LINE DRAW 13 START1 TEXTUREI 
LINE DRAW 12 STARTO TEXTUREO 
LINE DRAW 11 1 0 
LINE DRAW 10 0 0 
LINE DRAW 09 1 0 
LINE DRAW 08 1 0 
LINE DRAW 07 LE'7 0 
LINE DRAW 06 LE'6 SIGN 
LINE DRAW 05 LE'S o (Reserved) 
LINE DRAW 04 LE'4 SUD 
LINE DRAW 03 LE'3 SUL 
LINE DRAW 02 LE'2 AUL 
LINE DRAW 01 LE'1 SING 
LINE DRAW 00 LE'O LINE (=1) 
LINE DRAW 



>-
~ 

BLTSlZE 

LINE DRAW START3-0 Starting point of line 
LINE DRAW (0 thru 15 hex) 
LINE DRAW LF7-0 Logic function mintenn 
LINE DRAW select lines should be preloaded 
LINE DRAW with 4A to select the equation 
LINE DRAW D= (AC+ABC). Since A contains a 
LINE DRAW single bit true (8000), most bits 
LINE DRAW will pass the C field unchanged 
LINE DRAW (not A and C), but one bit will 
LINE DRAW invert the C field and colnbine it 
LINE DRAW with texture (A and B and not C) • 
LINE DRAW The A bit is automatically moved 
LINE DRAW 
LINE DRAW 

across the word by the hardware. 

LINE DRAW LINE Line mode control bit 
LINE DRAW (set to 1) 
LINE DRAW SIGN Sign flag 
LINE DRAW 0 Reserved for new mode 
LINE DRAW SING Single bit per horizontal 
LINE DRAW line for use with subsequent 
LINE DRAW area fill 
LINE DRAW SUD Sometimes up or down (=AUD*) 
LINE DRAW SUL Sometimes up or left 
LINE DRAW AUt Always up or left 
LINE DRAW The 3 bits above select the octant 
LINE DRAW for line drawing: 
LINE DRAW OCT SUD SUL AUL 
LINE DRAW 
LINE DRAW 0 1 1 0 
LINE DRAW 1 0 0 1 
LINE DRAW 2 0 1 1 
LINE DRAW 3 1 1 1 
LINE DRAW 4 1 0 1 
LINE DRAW 5 0 1 0 
LINE DRAW 6 0 0 0 
LINE DRAW 7 1 0 0 
LINE DRAW The "B" source is used for 
LINE DRAW texturing the drawn lines. 

058 W A Blitter start and size (window width, 
height) 

This register contains the width and height of 
the blitter operation (in line mode, width IDJ.St 
= 2, height = line length). Writing 'to this 
register will start the blitter, and should be 
done last, after all pointers and control 
registers have been initialized. 
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

h9 h8 h7 h6 h5 h4 h3 h2 h1 hO,w5 w4 w3 w2 wl wO 
h=height=vertical lines (10 bits=1024 lines max) 
w=width =horizontal pixels (6 bits=64 words=1024 pixels max) 
LINE DRAW BLTSlZE controls the line length and starts 
LINE DRAW the line draw when written to. The h field 
LINE DRAW controls the line length (10 bits gives 
LINE DRAW lines up to 1024 dots long). The w field 
LINE DRAW IDJ.St be set to 02 for all line drawing. 

BPLxPm 
BPLxPTL 

BPLlMOD 
BPL2MJD 

BPLCONO 

BPLCONl 

BPLCON2 

OEO W A Bit plane x pointer (high 3 bits) 
OE2 W A Bit plane x pointer (low 15 bits) 

This pair of registers contains the 18-bit pointer to 
the address of bit-plane x (x=1,2,3,4,5,6) DMA data. 
This pointer IDJ.St be reinitialized by the processor 
or copper to point to the beginning of bit plane data 
every vertical blank time. 

110 W D Bit plane x data CParallel-to-serial 
convert) 

These registers receive the DMA data fetched from 
RAM by the bit plane address pointers described 
above. They may also be written by either 
microprocessor. They act as a six-word parallel
to-serial buffer for up to six memory bit planes 
(x=1-6). The parallel-to-serial conversion is 
triggered whenever bit plane #1 is written, 
indicating the completion of all bit planes for 
that word (16 pixels). The MBB is output first, 
and is, therefore, always on the left. 

108 W A Bit plane modulo (odd planes) 
lOA W A Bit Plane modulo (even planes) 

100 

102 

104 

These registers contain the modulos for the odd 
and even bit planes. A modulo is a number that is 
automatically added to the address at the end of 
each line, so that the address then points to the 
start of the next line. 
Since they have separate modulos, the odd and even 
bit planes may have sizes that are different from 
each other, as well as different from the display 
window size. 

W AD Bit plane control register 
control bits) 

(misc. 

W D Bit plane control register 

W D 
(iborizontal scroll control) 

Bit Plane control register 
(video priority control) 

These registers control the operation of the 
bit planes and various aspects of the display. 
BIT# BPLCONO BPLCONl BPLCON2 

-------- -------- --------
15 HIRES X X 
14 BPU2 X X 
13 BPUl X X 
12 BPUO X X 
11 HOMOD X X 
10 DBLPF X X 
09 COLOR X X 
08 GAUD X X 
07 X PF2H3 X 
06 X PF2H2 PF2PRI 
05 X PF2H1 PF2P2 
04 X PF2HO PF2Pl 
03 LPEN PF1H3 PF2PO 



CLXCON 

> 
en 

02 LACE PFlH2 PFlP2 
01 ERSY PFlHl PFlPl 
00 X PFlHO PFlPO 
IDRES=Hlgh-resolution (640) mode 
BPU =Bit·plane use code 000-110 (NONE through 6 inclusive) 
lDIOD=Hold-and-modify mode 
DBLPF=Double playfield (pF1=odd PF2=even bit planes) 
COLOR=CoIIposite video COLOR enable 
GlWD=Genlock audio enable (muxed on BKGND pin 

during vertical blanking 
LPEN =Light pen enable (reset on power up) 
LACE =Interlace enable (reset on power up) 
ERSY =External resync (HSYNC, VSYNC pads become 

Inputs) (reset on power up) 
PF2PRI=Playfield 2 (even planes) has priority over 

(appears in front of) playfield 1 
(odd planes) . 

PF2P=Playfield 2 priority code (with respect 
to sprites) 

PF1P=Playfield 1 priority code (with respect: 
to sprites) 

PF2H=Playfield 2 horizontal scroll code 
PFlH=Playfield 1 horizontal scroll code 

098 W D Collision control 
This register controls which bit-planes are 
included (enabled) in collision detection and 
their required state if included. It also controls 
the individual inclusion of odd-numbered sprites 
in the collision detection by logically OR-ing 
them with their corresponding even-numbered sprite. 
BIT# FUNCTION DESCRIPTION 

-------- ------------------------------
15 ENSP7 Enable sprite 7 (ORed with sprite 6) 
14 ENSP5 Enable sprite 5 (ORed with sprite 4) 
13 ENSP3 Enable sprite 3 (ORed with sprite 2) 
12 ENSP1 Enable sprite 1 (ORed with sprite 0) 
11 ENBP6 Enable bit plane 6 (match required 

for colltsion) 
10 ENBP5 Enable bit plane 5 (match fequired 

09 
for collision) 

ENBP4 Enable bit plane 4 (match required 
for collision) 

08 ENBP3 Enable bit plane 3 (match required 
for collision) 

07 ENBP2 Enable bit plane 2 (match required 
for collision) 

06 ENBPI Enable bit plane 1 (match required 
for collision) 

05 MVBP6 Match value for bit plane 6 collision 
04 MVBP5 Match value for bit plane 5 collision 
03 MVBP4 Match value for bit plane 4 collision 
02 MVBP3 Match value for bit plane 3 collision 
01 MVBP2 Match value for bit plane 2 collision 
00 MVBP1 Match value for bit plane 1 collision 

COLORxx 

COPCON 

NOTE: Disabled bit planes cannot prevent 
collisions. Therefore if all bit planes are 
disabled, collisiOns will be continuous, 
regardless of the match values. 

OOE R D Collision data register (read and clear) 
This address reads (and clears) the collision 
detection register. The bit assignments are below. 
NOTE: Playfield 1 is all odd-numbered enabled 

bit planes. Playfield 2 is all even-numbered 
enabled bit planes 

BIT# COLLISIONS REGISTERED 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
09 Sprite 0 (or 1) to sprite 2 (or 3) 
08 Playfield 2 to sprite 6 (or 7) 
07 Playfield 2 to sprite 4 (or 5) 
06 Playfield 2 to sprite 2 (or 3) 
05 Playfield 2 to sprite 0 (or 1) 
04 Playfield 1 to sprite 6 (or 7) 
03 Playfield 1 to sprite 4 (or 5) 
02 Playfield 1 to sprite 2 (or 3) 
01 Playfield 1 to sprite 0 (or 1) 
00 Playfield 1 to playfield 2 

180 W D Color table xx 
There are 32 of these registers (xx=00-31) and they 
are sometimes collectively called the "color 
palette." They contain 12-bit codes representing 
red, green, and blue colors for RGB systEIIIS. 
One of these registers at a time is selected 
(by the BPLxDAT serialized video code) 
for presentation at the RGB video output pins. 
The table below shows the color register bit usage. 
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

RGBXXXX~~~~~~m~~~m~ 
B=blue, G=green, R=red, 

OlE W A Copper control register 
This is a I-bit register that when set true, allows 
the Copper to access the blitter hardware. This 
bit is cleared by power-on reset, so that the 
Copper cannot access the blitter hardware. 
BIT# NAME FUNCTION 

01 Copper danger mode. Allows Copper 
access to blitter if true. 



> COPJMPI 088 S A Copper restart at first location 
COPJMP2 OSA S A Copper restart at second location 

0) These addresses are strobe addresses. When written 
to, they cause the Copper to jwrp indirect using 
the address contained in the first or second 
location registers described below. The Copper 
itself can write to these addresses, causing its 
own jwrp indirect. 

COPlLCH 080 W A Copper first location register 
(high 3 bits) 

COPlLCL 082 W A Copper first location register 
(low 15 bits) 

COP2LCH 084 W A Copper second location register 
(high 3 bits) 

COP2LCL 086 W A Copper second location register 
(low 15 bits) 

These registers contain the jwrp addresses 
described above. 

COPINS OBC W A Copper instruction fetch identi fy 
This is a dummy address that is generated by the 
Copper whenever it is loading instructions into 
its own instruction register. This actually occurs 
every Copper cycle except for the second (IR2) 
cycle of the MOVE instruction. The three types 
of instructions are shown below. 
MOVE Move immediate to destination. 
WAIT Wait until beam counter is equal to, or 

greater than. (keeps Copper off of bus 
until beam position has been reached) • 

SKIP Skip if beam counter is equal to or 
greater than (skips following MOVE 
instruction unless beam position has 
been reached) • 

MOVE WAIT UNTIL SKIP IF 
-------- ----------- ------------

BIT# IRI IR2 IRI IR2 IRI IR2 

15 X RD1S VP7 BFD * VP7 BFD * 
14 X RD14 VP6 VE6 VP6 VE6 
13 X RD13 VPS VES VPS VES 
12 X RD12 VP4 VE4 VP4 VE4 
11 X RD11 VP3 VE3 VP3 VE3 
10 X RDIO VP2 VE2 VP2 VE2 
09 X RD09 VPl VEl VPl VEl 
08 DAB RD08 VPO VEO VPO VEO 
07 DA7 RD07 IIP8 HE8 lIPS HE8 
06 DA6 RD06 IIP7 HE7 IIP7 HE7 
05 DA5 RDOS IIP6 HE6 IIP6 HE6 
04 DA4 RD04 lIPS HES lIPS HES 
03 DA3 RD03 IIP4 HE4 IIP4 HE4 
02 DA2 RD02 IIP3 HE3 IIP3 HE3 
01 DA1 RDOI IIP2 HE2 IIP2 HE2 
00 0 RDOO 1 0 1 1 

DIWSTRT 

DIWSTOP 

IR1=First instruction register 
IR2=Second instruction register 
DA =Destination address for MOVE instruction. 

Fetched during IRI time, used during IR2 time 
on RGo\ bus. 

RD =RAM data moved by MOVE instruction at IR2 time 
directly from RAM to the address given by the 
DA field. 

VP =Vertical beam position comparison bit. 
lIP =Horizontal beam position comparison bit. 
VE =Enable comparison (mask bit) • 
HE =Enable comparison (mask bit) • 
* NOTE BFD=Blitter finished disable. When this bit 

is true, the Blitter Finished flag will 
have no effect on the Copper. When this 
bit is zero, the Blitter Finished flag 
must be true (in addition to the rest of 
the bit comparisons) before the Copper 
can exit from its wait state or skip 
over an instruction. Note that the V7 
comparison cannot be masked. 

The Copper is basically a two-cycle machine that 
requests the bus only during odd memory cycles 
(4 memory cycles per instruction). This prevents 
collisions with display, audio, disk, refresh, and 
sprites, all of which use only even cycles. It 
therefore needs (and has) priority over only the 
blitter and microprocessor. 

There are only three types of instructions: 
MOVE immediate, WAIT until, and SKIP if. All 
instructions (except for WAIT) require two bus 
cycles (and two instruction words). Since only 
the odd bus cycles are requested, four memory 
cycle times are required per instruction 
(memory cycles are 280 ns.) 

There are two indirect jwrp registers, COPlLC and 
COP2LC. 1'hese are IS-bit pointer registers whose 
contents are used to modify the program counter for 
initialization or jwrps. They are transferred to 
the program counter whenever strobe addresses 
COPJMPI or COPJMP2 are written. In addition, 
COPlLC is automatically used at the beginning of 
each vertical blank time. 

It is important that one of the jwrp registers be 
initialized and its jwrp strobe address hit after 
power-up but before Copper DMA is initialized. 
This insures a determined startup address and state. 

OSE W A 

090 W A 

Display window start (upper left 
vertical-horizontal position) 

Display window stop (lower right 
vertical-horizontal position) 



> 

DDFSTRT 
DDFSTOP 

DMACON 
DMACONR 

These registers control display window size and 
position by locating the upper left and lower right 
corners. 
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 
USE V7 V6 V5 V4 V3 V2 VI VO H7 H6 HS H4 H3 H2 HI HO 
DIWSTRT is vertically restricted to the upper 2/3 
of the display (V8=0) and horizontally restricted to 
the left 3/4 of the display (H8=0). 
DIWSTOP is vertically restricted to the lower 1/2 
of the display (V8=/=V7) and horizontally restricted 
to the right 1/4 of the display (H8=1). 

092 W A Display data fetch start (horiz. position) 
094 W A Display data fetch stop (horiz. position) 

These registers control the horizontal timing of the 
beginning and end of the bit plane DMA display data 
fetch. The vertical bit plane DMA timing is identical 
to the display windows described above. 
The bit plane modu1os are dependent on the bit plane 
horizontal size and on this data-fetch window size. 

Register bit assignment 

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 
~ XXXXXXXX~H7~HS~IDXX 

(X bits should always be driven with ° to maintain 
upward conpatibility) 

The tables below show the start and stop timing for 
different register contents. 

DDFSTRT (left edge of display data fetch) 

PURPOSE ~,H7,H6,HS,H4 

Extra wide (max) * ° ° 1 ° 1 
Wide 0 0 1 1 ° 
Normal ° ° 1 1 1 
Narrow 0 1 0 0 0 

DDFSTOP (right edge of display data fetch) 

PURPOSE 

Narrow 
Normal 
Wide (max) 

~,H7 ,H6,HS,H4 

11001 
11010 
11011 

096 WAD P DMA control write (clear or set) 
002 RAP DMA control (and blitter status) read 

This register controls all of the DMA channels and 
contains blitter DMA status bits. 

DSKPTH 
DSKPlL 

DSKLEN 

DSKDAT 
DSKDATR 

BIT# FUNCTION 

15 

14 
13 

12 
11 
10 

09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

SET/CLR 

BBUSY 
BZERO 

X 
X 
BLTPRI 

DMAEN 
BPLEN 
COPEN 
BLTEN 
SPREN 
DSKEN 
AUD3EN 
AUD2EN 
AUDlEN 
AUDOEN 

DESCRIPTION 

Set/clear control bit. Determines 
if bits written with a 1 get set or 
cleared. Bits written with a zero 
are unchanged. 
Blitter busy status bit (read only) 
Blitter logic zero status bit 
(read only) • 

Blitter DMApriority 
{over CPU micro) (also called 
'bUtter nasty") (disables /BLS 
pin, preventing micro from 
stealing any bus cycles while 
blitter DMA is running). 
Enable all DMA below 
Bit plane DMA enable 
Copper DMA enable 
B1itter DMA enable 
Sprite DMA enable 
Disk DMA enable 
Audio channel 3 DMA enable 
Audio channel 2 DMA enable 
Audio channel 1 DMA enable 
Audio channel ° DMA enable 

020 W A Disk pointer (high 3 bits) 
022 W A Disk pointer (lOW 15 bits) 

This pair of registers contains the 18-bit 
address of disk DMA data. These address registers 
must be initialized by the processor or Copper 
before disk DMA is enabled. 

024 W P Disk length 
This register contains the length (nwnber of words) 
of disk DMA data. It also contains two control 
bits, a DMA enable bit, and a DMA direction 
(read/write) bit. 
BIT# FUNCTION DESCRIPTION 

----------- --------------------------------
15 DMAEN 
14 WRITE 
13-0 LENGlH 

Disk DMA enable 
Disk write (RAM to disk) if 1 
Length (:It of words) of DMA data. 

026 W P Disk DMA data write 
008 ER P Disk DMA data read (early read dUlllllY 

address) 
This register is the disk DMA data buffer. It 
contains two bytes of data that are either sent 
(written) to or received (read) from the disk. 
The write mode is enabled by bit 14 of the LENGlH 
register. The DMA controller automatically 
transfers data to or from this register and RAM, 
and when the DMA data is finished (length=O) it 
causes a disk block interrupt. See interrupts below. 



> DSKBY'l'R OlA R P Disk data byte and status read 
'!his register is the disk-microprocessor data 

00 buffer. Data from the disk (in read mode) is 
loaded into this register one byte at a time, and 
bit 15 (DSKSYT) is set true. 
BITt 

--------- --------------------------------
15 DSKBYT Disk byte ready (reset on read) 
14 SMAON Mirror of bit 15 (DMAEN) in DSKLEN, 

ANDed with Bit09 (DMAEN) in DMACON 
13 DISKWRlTE Mirror of bit 14 (WRITE) in DSKLEN 
12 t«>RDEQUAL '!his bit true only while the 

DSKSYNC register equals the data 
from disk. 

11-08 X Not used 
07-00 DATA Disk byte data 

DSKSYNC 07E W P Disk sync register, holds the match 
code for disk read synchronization. 
See ADKCON bit 10. 

INTREQ 09C W P Interrupt request bits (clear or set) 
INTREQR OlE R P Interrupt request bits (read) 

This register contains interrupt request bits (or 
flags). These bits may be polled by the processor; 
if enabled by the bits listed in the next register, 
they may cause processor interrupts. Both a set and 
clear operation are required to load arbitrary data 
into this register. These status bits are not 
automatically reset when the interrupt is serviced, 
and IIJlst be reset when desired by writing to this 
address. '!he bit assignments are identical to the 
enable register below. 

INTENA 09A W P Interrupt enable bits (clear or set bits) 
INTENAR 01C R P Interrupt enable bits (read) 

This register contains interrupt enable bits. '!he bit 
assignment for both the request and enable registers 
is given below. 

BITt FUNCT LEVEL DESCRIPTION 
------ ----- ----------------------------------

15 SET/CLR Set/clear control bit. Determines if 
bits written with a 1 get set or 
cleared. Bits written with a zero 
are always unchanged. 

14 INTEN Master interrupt (enable only, 
no request) 

13 EXTER 6 External interrupt 
12 DSKSYN 5 Disk sync register (DSKSYNC) 

matches disk data 
11 RBF 5 Serial port receive buffer full 
10 AUD3 4 Audio channel 3 block finished 
09 AUD2 4 Audio channel 2 block finished 
08 AUDl 4 Audio channel 1 block finished 
07 AUDO 4 Audio channel ° block finished 

JOYODAT OOA 

JOYlDAT OOC 

06 BLIT 3 Blitter finished 
05 VERTB 3 Start of vertical blank 
04 COPER 3 Copper 
03 PORTS 2 I/O ports and timers 
02 SOE"T 1 Reserved for software-initiated 

interrupt 
01 DSKBLK 1 Disk block finished 
00 TBE 1 Serial port transmit buffer eapty 

R D Joystick-mouse 0 data (left vertical, 
horizontal) 

R D Joystick-mouse 1 data (right vertical, 
horizontal) 

These addresses each read a pair of 8-bit mouse 
counters. O=left controller pair, l=right 
controller pair (four counters total). '!he bit 
usage for both left and right addresses is shown 
below. Each counter is clocked by signals from 
two controller pins. Bits 1 and ° of each counter 
may be read to determine the state of these two 
clock pins. '!his allows these pins to double as 
joystick switch inputs. 

Mouse counter usage: 
(pins 1.3=Yclock, pins 2.4=Xclock) 
BIT# 15.14.13.12,11.10.09,08 07.06,05.04,03.02.01.00 
OOAT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO X7 X6 XS X4 X3 X2 Xl XO 
lDAT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO X7 X6 XS X4 X3 X2 Xl XO 

The following table shows the mouse/joystick 
connector pin usage. '!he pins (and their functions) 
are sarrpled (lIJlltiplexed) into the DENISE chip 
during the clock times shown in the table. 
'!his table is for reference only and should 
not be needed by the programner. (Note that the 
joystick functions are all "active low" at the 
connector pins.) 

Sarrpled by DENISE 
Conn Joystick Mouse -----------------
Pin Function Function Pin Name Clock 

-------- -------. ---- -----
Ll FORW* Y 38 MOV at CCK 
L3 LEFT* YQ 38 MOV at CCK* 
L2 BACK* X 9 MOH at CCK 
L4 RIGH* XQ 9 MOH at CCK* 
Rl FORW* Y 39 MIV at CCK 
R3 LEFT* YQ 39 MlV at CCK* 
R2 BACK* X 8 M1H at CCK 
R4 RIGH* XQ 8 M1H at CCK* 

After being sarrpled, these connector pin signals 
are used in quadrature to clock the mouse counters. 
'!he LEFT and RIGHT joystick functions (active high) 
are directly available on the Yl and Xl bits of 
each counter. In order to recreate the FORWARD 
and BACK joystick functions, however, it is 



JOYTEST 

POTODAT 
POTlDAT 

POTOO 

POTOOR 

necessary to logically combine (exclusive OR) 
the lower two bits of each counter. 
This is illustrated in the following table. 

To detect 

Forward 
Left 
Back 
Right 

Read these 
counter bits 

Yl xor YO (BIT#09 xor BIT#08) 
Y1 
Xl xor XO (BIT#Ol xor BIT#OO) 
Xl 

036 W D Write to all four joystick-mouse counters 
at once. 

Mouse counter write test data: 
BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 
ODAT Y7 Y6 YS Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx 
lDAT Y7 Y6 YS Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx 

012 R P Pot counter data left pair (vert,horiz) 
014 R P Pot counter data right pair (vert,horiz) 

These addresses each read a pair of 8-bit pot counters. 
(Four counters total.) The bit assignment for both 
addresses is shown below. The counters are stopped by 
signals from two controller connectors (left-right) 
with two pins each. 
BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

RIGHT Y7 Y6 YS Y4 Y3 Y2 Yl YO X7 X6 X5 X4 X3 X2 Xl XO 
LEFT Y7 Y6 YS Y4 Y3 Y2 Y1 YO X7 X6 X5 X4 X3 X2 Xl XO 

CONNECTORS PAUIA 

Loe. Dir. Sym Pin Pin# Pin Name 
---- --- ---- --------
RIGHT Y RY 9 36 (POT1Y) 
RIGHT X RX 5 35 (POTlX) 
LEFT Y LY 9 33 (POTOY) 
LEFT X LX 5 32 (POTOX) 

034 W P Pot port data write and start. 

016 R P Pot port data read (formerly called POTINP). 
This register controls a 4-bit bi-directional I/O port 
that shares the same four pins as the four pot counters 
above. 

BIT# FUNCT DESCRIPTION 

15 
14 
13 
12 
11 
10 
09 

OUTRY 
DATRY 
OUTRX 
DATRX 
OUTLY 
DATLY 
0U'l'LX 

Output enable for Paula pin 36 
I/O data Paula pin 36 
Output enable for Paula pin 35 
I/O data Paula pin 35 
Output enable for Paula pin 33 
I/O data Paula pin 33 
Output enable for Paula pin 32 

SERDAT 

SERDATR 

08 DATLX 
07-01 0 
00 START 

I/O data Paula pin 32 
Reserved for chip ID code (presently 0) 
Start pots (duDp capacitors. start 

counters) 

028 W A Refresh pointer 
This register is used as a dynamic RAM refresh 
address generator. It is writeable for test 
purposes only, and should never be written by 
the microprocessor. 

030 W P Serial port data and stop bits write 
(transmit data buffer) 

This address writes data to a transmit data buffer. 
Data from this buffer is moved into a serial shift 
register for output transmission whenever it is 
eopty. This sets the interrupt request TBE 
(transmit buffer eopty). A stop bit must be 

provided as part of the data word. The length of 
the data word is set by the position of the stop 
bit. 
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 
USE 0 0 0 0 0 0 S DB D7 D6 D5 D4 D3 D2 D1 DO 
Note: S = stop bit = 1, D = data bits. 

018 R P Serial port data and status read 
(receive data buffer) 

This address reads data from a receive data buffer. 
Data in this buffer is loaded from a receiving 
shift register whenever it is full. Several 
interrupt request bits are also read at this 
address, along with the data, as shown below. 
BIT# 
15 

1<1 

13 

12 

11 

10 
~9 

OVRUN 

RBF 

TBE 

TSRE 

RXD 

0 
STP 

08 STP-DB8 

07 DB7 
06 DB6 
05 DBS 
04 DB4 
03 DB3 
02 DB2 
01 DBl 
00 DBO 

Serial port receiver overrun. 
Reset by resetting bit 11 of 
INTREQ. 
Serial port receive buffer full 
(mirror) • 
Serial port transmit buffer 
eopty (mirror). 
Serial port transmit shift 
register eopty. 
Reset by loading into buffer. 
RXD pin receives UART serial 
data for direct bit test by 
the microprocessor. 
Not used 
Stop bit 
Stop bit if LONG. data bit if 
not. 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 



> 
..... 
0 

SERPER 

SPRxPTH 
SPRxPTL 

SPRxPOS 
SPRxCTL 

SPRxDATA 
SPRxDATB 

032 W P Serial port period and control 
This register contains the control bit LONG referred to 
above, and a 15-bit number defining the serial port 
baud rate. If this number is N, then the baud rate is 
1 bit every (N+l)*.2794 
BIT# 

microseconds. 

15 LONG Defines serial receive as 9-bit word. 
14-00 RATE Defines baud rate=l/ «N+ 1) * • 2794 microsec.) 

120 W A Sprite x pointer (high 3 bits) 
122 W A Sprite x pointer (low 15,bits) 

This pair of registers contains the lS-bit address 
of sprite x (X=O,1,2,3,4,5,6,7) DMA data. These address 
registers must be initialized by the processor or Copper 
every vertical blank time. 

140 WAD Sprite x vert-horiz start position data 
142 WAD Sprite x vert stop position and control data 

These two registers work together as poSition, size and 
feature sprite-control registers. They are usually loaded 
by the sprite DMA channel during horizontal blank; 
however, they may be loaded by either processor at any time. 
SPRxPOS register: 
BIT# SYM FUNCTION 

15-08 SV7-SVO Start vertical value. High bit(SV8) is 
in SPRxCTL register below. 

07-00 SHS-SHl Start horizontal value. Low bit(SHO) is 
in SPRxCTL register below. 

SPRxCTL register (writing this address disables sprite 
horizontal comparator circuit): 

BIT# SYM FUNCTION 

15-08 
07 
06-04 
02 
01 
00 

EV7-£IIO 
ATT 

X 
SVS 
EVS 
SHO 

End (stop) vertical value low 8 bits 
Sprite attach control bit (odd sprites) 
Not used 
Start vertical value high bit 
End (stop) vertical value high bit 
Start horizontal value low bit 

144 W D Sprite x image data register A 
146 W D Sprite x image data register B 

These registers buffer the sprite image data. They are 
usually loaded by the sprite DMA. channel but may be 
loaded by either processor at any time. When a 
horizontal comparison occurs, the buffers are dumped 
into shift registers and serially outputted to the 
display, MSB first on the left. 
NOTE: Writing to the A buffer enables (arms) the sprite. 
Writing to the SPRxCTL register disables the sprite. 
If enabled, data in the A and B buffers will be outputted 
tfuenever the beam counter equals the sprite horizontal 
position value in the SPRxPOS register. 

STREQU 

STRVBL 

STRHOR 
STRLONG 

VPOSR 

VPOSW 

VHI?OSR 

VHPOSW 

038 

OM 

03C 
03E 

S D Strobe for horizontal sync with VB 
and EQU 

S D Strobe fOl- horizontal sync with VB 
(vertical blank) 

S D P Strobe for horizontal sync 
S D Strobe for identification of long 

horizontal line 
One of the first three strobe addresses above is 
placed on the destination address bus during the 
first refresh time slot. The fourth strobe shown 
above is used during the second refresh time slot of 
every other line to identify lines with long counts 
(22S). There are four refresh time slots, and any 
not used for strobes will leave a null (FF) address 
on the destination address bus. 

004 R A Read vertical most significant bit 
(and frame flop) 

02A W A Write vertical most significant bit 
(and frame flop) 

BIT# 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,00 
USE LOF-- -- -- -- -- -- --,-- -- -- -- -- -- -- V8 
LOF=Long frame (auto toggle control bit in BPLCONO) 

006 R A Read vertical and horizontal position of 
beam or lightpen 

02C W A Write vertical and horizontal position 
of beam or lightpen 

BIT# 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,OO 
USE V7 V6 V5 V4 V3 V2 V1 VO,HS H7 H6 H5 H4 H3 H2 H1 
RESOLUTION = 1/160 of screen width (280 ns) 



Appendix B 

Register Summary-Address Order 

This appendix contains information about the register set in address order. 

The following codes and abbreviations are used in this appendix: 

& Register used by DMA channel only. 

% Register used by DMA channel usually, processors sometimes. 

+ Address register pair. Low word uses DBI-DB15; high word uses DBO-DB2. 

B-1 



* Address not writable by the Copper. 

Address not writable by the Copper unless COPCON is set true. 

A,D,P 
A=Agnus chip, D=Denise chip, P=Paula chip. 

W,R 
W write; R=read, 

ER Early read. This is a DMA data transfer to RAM, from either the disk or the 
blitter. RAM timing requires data to be on the bus earlier than microprocessor 
read cycles. These transfers are therefore initiated by Agnus timing, instead of a 
read address on the destination address bus. 

S Strobe (write address with no register bits). 

PTL,PTH 
IS-bit pointer that addresses DMA data. Must be reloaded by a processor 
before use (vertical blank for bit-plane and sprite pointers, and prior to starting 
the blitter for blitter pointers). 

LCL,LCH 
IS-bit location (starting address) of DMA data. Used to automatically restart 
pointers, such as the Copper program counter (during vertical blank) and the 
audio sample counter (whenever the audio length count is finished). 

MOD 

B-2 

IS-bit modulo. A number that is automatically added to the memory address at 
the end of each line to generate the address for the beginning of the next line. 
This allows the blitter (or the display window) to operate on (or display) a win
dow of data that is smaller than the actual picture in memory (memory map). 
Uses 15 bits, plus sign extend. 



---.-------------------------------.---------------------------------- BLTIH>D ·066 W A Blitter modulo for destination D 
NAME ADD R/W emp FUNCTION ·068 
---------------------------------------------------------------------- ·06.\ 
BLTDDAT & '000 ER A Blitter destination early read (dllDlllY address) ·06C 
DMACONR '002 R A P !»fA control (and blitter status) read ·06E 
VPOSR '004 R A Read vert most signif. bit (and frame flop) BLTCDAT % ·070 W A Blitter source C data register 
VHPOSR '006 R A Read vert and horiZ. position of beam BLTBDAT % ·072 W A Blitter source B data register 
DSKDI\TR & '008 ER P Disk data early read (dllDlllY address) BLTADAT % ·074 W A Blitter source A data register 
JOYODAT 'OOA R D Joystick-mouse 0 data (vert,horiz) ·076 
JOYlDAT 'OOC R D Joystick-mouse 1 data (vert,horiz) ·078 
CLXDAT 'OOE R D Collision data register (read and clear) ·07A 
ADKCONR '010 R P Audio, disk control register read ·07C 
POTODAT '012 R P Pot counter pair 0 data (vert,horiz) DSKSYNC ·07E R P Disk sync pattern register for disk 
POTIDAT '014 R P Pot counter pair 1 data (vert,horizl read 
POTOOR '016 R P Pot port data read (formerly POTINP COPlLCH + 080 W A Coprocessor first location register 
SERDA'lR '018 R P Serial port data and status read (high 3 bits) 
DSKBY'lR 'OlA R P Disk data byte and status read COPlLCL + 082 W A Coprocessor first location register 
INTENAR 'OlC R P Interrupt enable bits read (low 15 bits) 
IN'lREQR 'OlE R P Interrupt request bits read COP2LCH + 084 W A Coprocessor second location register 
DSKPTH + '020 W A Disk pointer (high 3 bits) (high 3 bits) 
DSKPTL + '022 W A Disk pOinter (low 15 bits) COP2LCL + 086 W A Coprocessor second location register 
DSKLEN '024 W P Disk length (low 15 bits) 
DSKDAT & '026 W P Disk !»fA data write COPJMI?l 088 S A Coprocessor restart at first location 
REFP'lR & '028 W A Refresh pOinter COPJMI?2 OSA S A Coprocessor restart at second location 
VPOSW '02A W A Write vert most signif. bit (and frame flop) COPINS 08C W A Coprocessor instruction fetch identify 
VHPOSW '02C W A Write vert and horiz position of beam DIWS'lRT 08E W A Display window start (upper left 
COPCON '02E W A Coprocessor control register (CDANG) vert-horiz position) 
SERDAT '030 W P Serial port data and stop bits write DIWSTOP 090 W A Display window stop (lower right 
SERPER '032 W P Serial port period and control vert. -horiz. position) 
POTOO '034 W P Pot port data write and start DDFS'lRT 092 W A Display bit plane data fetch start 
JOYTEST '036 W D Write to all four joystick-mouse counters at once (boriz. position) 
S'lREQU & '038 S D Strobe for horiz sync with VB and EQU DDFSTOP 094 W A Display bit plane data fetch stop 
S'lRVBL & *OJA S D Strobe for horiz sync with VB (vert. blank) (horiz. position) 
STRHOR & '03C S DP Strobe for horiz sync DMACON 096 W ADP !»fA control write (clear or set) 
SlRLONG & 'OJE S D Strobe for identification of long horiz. line. CLXCON 098 W D Collision control 
BLTCONO ·040 W A Blitter control register 0 INTENA 09A W P Interrupt enable bits (clear or 
BLTCONI ·042 W A Blitter control register 1 set bits) 
BLTAFWM ·044 W A Blitter first word mask for source A IN'lREQ 09C w P Interrupt request bits (clear or 
BLTALWM ·046 W A Blitter last word mask for source A set bits) 
BLTCPTII + ·048 W A Blitter pointer to source C (high 3 bits) ADKCON 09E W P Audio, disk, UART control 
BLTCPTL + ·04A W A Blitter pointer to source C (low 15 bits) AUDOLCH + OAO W A Audio channel 0 location (high 3 bits) 
BLTBPm + ·04C W A Blitter pointer to source B (high 3 bits) AUDOLCL + 0A2 W A Audio channel 0 location (low 15 bits) 
BLTBPTL + ·04E W A Blitter pointer to source B (low 15 bits) AUDOLEN OM W P Audio channel 0 length 
BLTAPm + "050 W A Blitter pointer to source A (high 3 bits) AUDOPER 0A6 W P Audio channel 0 period 
BLTAPTL + ·052 W A Blitter pointer to source A (lOW 15 bits) AUDOVOL OAS W P Audio channel 0 volume 
BLTDPTII + "054 W A Blitter pointer to destination D (high 3 bits~ AUDODAT & OM W P Audio channel 0 data 
BLTDPTL + ·056 W A Blitter pointer to destination D (low 15 bits OAC 
BLTSIZB "058 W A Blitter start and size (window wldth, height) OAB 

"OSA AUDlLCH + OBO W A Audio channel 1 location (high 3 bits) 
"OSC AUDlLCL + OB2 W A Audio channel 1 location (low 15 bits) 
"05E AUDlLEN 0B4 W P Audio channel 1 length 

BL'J."CK)[) "060 W A Blitter modulo for source C AUDlPER 0B6 W P Audio channel 1 period 

to 
BLTBMOD "062 W A Blitter modulo for source B AUD1VOL 0B8 W P Audio channel 1 volume 
BLTAKX> "064 W A Blitter modulo for source A AUDlDAT & OBA W P Audio channel 1 data 

OBC 
c.,) OBE 



to AUD2LCl{ + OCO W A Audio channel 2 location (high 3 bits) SPR4PTH + 130 W A Sprite 4 pointer (high 3 bits) 
AUD2LCL + OC2 W A Audio channel 2 location (low 15 bits) SPR4PTL + 132 W A Sprite 4 pointer (low 15 bits) 

~ AUD2LEN 0C4 W P Audio channel 2 length SPRSPTH + 134 W A Sprite 5 pointer (high 3 bits) 
AUD2PER 0C6 W P Audio channel 2 period SPRSPTL + 136 W A Sprite 5 pointer (low 15 bits) 
AUD2VOL oca W P Audio channel 2 volume SPRGPTH + 138 W A Sprite 6 pointer (high 3 bits) 
AUD2DAT & OCA W P Audio channel 2 data SPR6PTL + 13A W A Sprite 6 pointer (low 15 bits) 

OCC SPR7PTH + 13C W A Sprite 7 pointer (high 3 bits) 
OCE SPR7PTL + 13E W A Sprite 7 pointer (low 15 bits) 

AUD3LCl{ + ODO W A Audio channel 3 location (high 3 bits) SPROPOS % 140 W AD Sprite 0 vert-horiz start position 
AUD3LCL + OD2 W A Audio channel 3 location (lOW 15 bits) data 
AUD3LEN 004 W P Audio channel 3 length SPROCTL % 142 W AD Sprite 0 vert stop position and 
AUD3PER 006 W P Audio channel 3 period control data 
AUD3VOL OD8 W P Audio channel 3 volume SPRODATA % 144 W D Sprite 0 image data register A 
AUD3DAT & ODA W P Audio channel 3 data SPRODATB % 146 W D Sprite 0 image data register B 

OOC SPRlPOS % 148 W AD Sprite 1 vert-horiz start position 
ODE data 

BPLlPTH + OEO W A Bit plane 1 pointer (high 3 bits) SPRlCTL % 14A W AD Sprite 1 vert stop position and 
BPLlPTL + OE2 W A Bit plane 1 pOinter (low 15 bits) control data 
BPL2PTH + OE4 W A Bit plane 2 pointer (high 3 bits) SPRlDATA % 14C W D Sprite 1 image data register A 
BPL2PTL + OE6 W A Bit plane 2 pointer (low 15 bits) SPR1DATB % 14E W D Sprite 1 image data register B 
BPL3PTH + OE8 W A Bit plane 3 pointer (high 3 bits) SPR2POS % 150 W AD Sprite 2 vert-horiz start position 
BPL3PTL + OEA W A Bit plane 3 pointer (low 15 bits) data 
BPL4PTH + OEC W A Bit plane 4 pOinter (high 3 bits) SPR2CTL % 152 W AD Sprite 2 vert stop position and 
BPL4PTL + OEE W A Bit plane 4 pointer (low 15 bits) control data 
BPL5PTH + OEO W A Bit plane 5 pointer ~gh 3 bits) SPR2DATA % 154 W D Sprite 2 image data register A 
BPL5PTL + OE2 W A Bit plane 5 pOinter low 15 bits) SPR2DATB % 156 W D Sprite 2 image data register B 
BPL6PTH + OE4 W A Bit plane 6 pOinter (high 3 bits) SPR3POS % 158 W AD Sprite 3 vert-horiz start position 
BPLGPTL + OE6 W A Bit plane 6 pointer (low 15 bits) data 

OE8 SPR3CTL % 15A W AD Sprite 3 vert stop position and 
OEA control data 
OEC SPR3DATA % 15C W D Sprite 3 image data register A 
OEE SPR3DATB % 15E W D Sprite 3 image data register B 

BPLCONO 100 W AD Bit plane control register (misc. control bits) SPR4POS % 160 W AD Sprite 4 vert-horiz start pOSition 
BPLCON1 102 W D Bit plane control reg. (scroll value PEl, PE2) data 
BPLCON2 104 W D Bit plane control reg. (priority control) SPR4CTL % 162 W AD Sprite 4 vert stop position and 

106 control data 
BPLlMOD 108 W A Bit plane modulo (odd planes) SPR4DATA % 164 W D Sprite 4 image data register A 
BPL2MOD lOA W A Bit Plane modulo (even planes) SPR4DATB % 166 W D Sprite 4 image data register B 

10C SPR5POS % 168 W AD Sprite 5 vert-horiz start position 
10E data 

BPLlDAT & 110 W D Bit plane 1 data (parallel-to-serial convert) SPR5CTL % 16A W AD Sprite 5 vert stop position and 
BPL2DAT & 112 W D Bit plane 2 data (parallel-to-serial convert) control data 
BPL3DAT & 114 W D Bit plane 3 data (parallel-to-serial convert) SPR5DATA % 16C W D Sprite 5 image data register A 
BPL4DAT & 116 W D Bit plane 4 data (parallel-to-serial convert) SPR5DATB % 16E W D Sprite 5 image data register B 
BPL5DAT & 118 W D Bit plane 5 data (parallel-to-serial convert) SPR6POS % 170 W AD Sprite 6 vert-horiz start position 
BPL6DAT & llA W D Bit plane 6 data (parallel-to-serial convert) data 

11C SPR6CTL % 172 W AD Sprite 6 vert stop position and 
I1B control data 

SPROPTH + 120 W A Sprite 0 pointer (high 3 bits) SPR6DATA % 174 W D Sprite 6 image data register A 
SPROPTL + 122 W A Sprite 0 pointer (low 15 bits) SPR6DATB % 176 W D Sprite 6 image data register B 
SPRlPTH + 124 W A Sprite 1 pointer (high 3 bits) SPR7POS % 178 W AD Sprite 7 vert-horiz start position 
SPRlPTL + 126 W A Sprite 1 pointer (low 15 bits) data 
SPR2PTH + 128 W A Sprite 2 pointer (high 3 bits) SPR7CTL % 17A W AD Sprite 7 vert stop position and 
SPR2PTL + 12A W A Sprite 2 pointer (low 15 bits) control data 
SPR3PTH + 12C W A Sprite 3 pointer (high 3 bits) SPR7DATA % 17C W D Sprite 7 image data register A 
SPR3PTL + 12E W A Sprite 3 pointer (low 15 bits) SPR7DATB % 17E W D Sprite 7 image data register B 



COLOROO 180 W D Color table 00 
COLOROI 182 W D Color table 01 
COLOR02 184 W D Color table 02 
COLOR03 186 W D Color table 03 
COLOR04 188 W D Color table 04 
COLOR05 1M W D Color table OS 
COLOR06 lSC W D Color table 06 
COLOR07 lSE W D Color table 07 
COLOR08 190 W D Color table 08 
COLOR09 192 W D Color table 09 
COLORI0 194 W D Color table 10 
COLORll 196 W D Color table 11 
COLORl2 198 W D Color table 12 
COLOR13 19A W D Color table 13 
COLOR14 19C W D Color table 14 
COLORl5 19E W D Color table 15 
COLORl6 lAO W D Color table 16 
COLOR17 lA2 W D Color table 17 
COLORl8 lA4 W D Color table 18 
COLOR19 lAG W D Coior table 19 
COLOR20 lAS W D Color table 20 
COLOR21 1M W D Color table 21 
COLOR22 lAC W D Color table 22 
COLOR23 lAB W D Color table 23 
COLOR24 IBO W D Color table 24 
COLOR25 IB2 W D Color table 25 
COLOR26 IB4 W D Color table 26 
COLOR27 IB6 W D Color table 27 
COLOR28 IBS W D Color table 28 
COLOR29 IB.&. W D Color table 29 
COLOR30 IBC W D Color table 30 
COLOR31 IBE W D Color table 31 
RESERVED 1110X 
RESERVED llllX 
NO-OP (NULL) l.FE 



Appendix C 

Custom Chip Pin Allocation List 

NOTE: * Means an active low signal. 
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0 AGNUS PIN ASSIGNMENT DENISE PIN ASSIGNMENT 
-------------------- --------------------

~ 
PIN :It DESIGNATION FUNCTION DEFINITION PIN :It DESIGNATION FUNCTION DEFINITION 

----------- ------------------ ---------- ----------- ------------------ ----------
1 OS DATA BUS 8 I/O 1 D6 DATA BUS 6 I/O 
2 D7 DATA BUS 7 I/O 2 D5 DATA BUS 5 I/O 
3 D6 DATA BUS 6 I/O 3 D4 DATA BUS 4 I/O 
4 D5 DATA BUS 5 I/O 4 D3 DATA BUS 3 I/O 
5 D4 DATA BUS 4 I/O 5 D2 DATA BUS 2 I/O 
6 D3 DATA BUS 3 I/O 6 D1 DATA BUS 1 I/O 
7 D2 DATA BUS 2 I/O 7 DO DATA BUS 0 I/O 
8 D1 DATA BUS 1 I/O 8 MlH MOUSE 1 HORIZONTAL I 
9 DO DATA BUS 0 I/O 9 MOH MOUSE 0 HORIZONTAL I 

10 vee +5 VOLT I 10 RGAB REGISTER ADDRESS 8 I 
11 RES* SYSTEM RESET I 11 RCA7 REGISTER ADDRESS 7 I 
12 INT3* INTERRUPT LEVEL 3 0 12 RGA6 REGISTER ADDRESS 6 I 
13 DMAL DMA REQUEST LINE I 13 RGAS REGISTER ADDRESS 5 I 
14 BLS* BLITTER S~ I 14 RCA4 REGISTER ADDRESS 4 I 
15 DBR* DATA BUS REQUEST 0 15 RGA3 REGISTER ADDRESS 3 I 
16 ARW* AGNUS RAM WRITE 0 16 RCA:! REGISTER ADDRESS 2 I 
17 RGAB REGISTER ADDRESS 8 I/O 17 ReAl REGISTER ADDRESS 1 I 
18 RCA7 REGISTER ADDRESS 7 I/O 18 BURST* COLOR BURST 0 
19 RCA6 REGISTER ADDRESS 6 I/O 19 vcr; +5 VOLT I 
20 RGAS REGISTER ADDRESS 5 I/O 20 RO VIDEO RED BIT 0 0 
21 RCA4 REGISTER ADDRESS 4 I/O 21 R1 VIDEO RED BIT 1 0 
22 RGA3 REGISTER ADDRESS 3 I/O 22 R2 VIDEO RED BIT 2 0 
23 RCA:! REGISTER ADDRESS 2 I/O 23 R3 VIDEO RED BIT 3 0 
24 ReAl REGISTER ADDRESS 1 I/O 24 BO VIDEO BLUE BIT 0 0 
25 CCK COLOR CLOCK I 25 B1 VIDEO BLUE BIT 1 0 
26 CCKQ COLOR CLOCK DELAY I 26 B2 VIDEO BLUE BIT 2 0 
27 VSS GROUND I 27 B3 VIDEO BLUE BIT 3 0 
28 DRAO DYNAMIC RAM ADDRESS 0 0 28 GO VIDEO GREEN BIT 0 0 
29 DRAl DYNAMIC RAM ADDRESS 1 0 29 G1 VIDEO GREEN BIT 1 0 
30 DRA:! DYNAMIC RAM ADDRESS 2 0 30 G2 VIDEO GREEN BIT 2 0 
31 DRA3 DYNAMIC RAM ADDRESS 3 0 31 G3 VIDEO GREEN BIT 3 0 
32 DRA4 DYNAMIC RAM ADDRESS 4 0 32 N/C NOT CONNECTED N/C 
33 DRAS DYNAMIC RAM ADDRESS 5 0 33 ZO* BACKGROUND INDICATOR 0 
34 DRA6 DYNAMIC RAM ADDRESS 6 0 34 N/C NOT CONNECTED N/C 
35 DRA7 DYNAMIC RAM ADDRESS 7 0 35 1M 7.15909 MHZ I 
36 DRAB DYNAMIC RAM ADDRESS 8 0 36 CCK COLOR CLOCK I 
37 LP* LIGHT PEN INPUT I 37 VSS GROUND I 
38 VSYt VERTICAL SYNC I/O 38 MOV MOUSE 0 VERTICAL I 
39 CSY* COMPOSITE SYNC 0 39 M1V MOUSE 1 VERTICAL I 
40 HSY* HORIZONtAL SYNC I/O 40 D15 DATA BUS 15 I/O 
41 VSS GROUND I 41 D14 DATA BUS 14 I/O 
42 D15 DATA BUS 15 I/O 42 D13 DATA BUS 13 I/O 
43 D14 DATA BUS 14 I/O 43 D12 DATA BUS 12 I/O 
44 D13 DATA BUS 13 I/O 44 D11 DATA BUS 11 I/O 
45 D12 DATA BUS 12 I/O 45 D10 DATA BUS 10 I/O 
46 011 DATA BUS 11 I/O 46 D9 DATA BUS 9 I/O 
47 D10 DATA BUS 10 I/O 47 OS DATA BUS 8 I/O 
48 D9 DATA BUS 9 I/O 48 D7 DATA BUS 7 I/O 



PAULA. PIN ASSIGNMENT 
--------------------

PIN # DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

1 D8 DATA BUS 8 I/O 
2 D7 DATA BUS 7 I/O 
3 D6 DATA BUS 6 I/O 
4 D5 DATA BUS 5 I/O 
5 D4 DATA BUS 4 I/O 
6 D3 DATA BUS 3 I/O 
7 D2 DATA BUS 2 I/O 
8 VSS GROUND I 
9 Dl DATA BUS 1 I/O 

10 DO DATA BUS 0 I/O 
11 RES* SYSTEM RESET I 
12 DMAL DMA REQUEST LINE 0 
13 IPLO* INTERRUPT LINE 0 0 
14 IPL1* INTERRUPT LINE 1 0 
15 IPL2* INTERRUPT LINE 2 0 
16 INT2* INTERRUPT LEVEL 2 I 
17 INT3* INTERRUPT LEVEL 3 I 
18 INT6* INTERRUPT LEVEL 6 I 
19 RGA8 REGISTER ADDRESS 8 I 
20 RCA7 REGISTER ADDRESS 7 I 
21 RCA6 REGISTER ADDRESS 6 I 
22 RCAS REGISTER ADDRESS 5 I 
23 RCA4 REGISTER ADDRESS 4 I 
24 RCA3 REGISTER ADDRESS 3 I 
25 RCA2 REGISTER ADDRESS 2 I 
26 RCAl REGISTER ADDRESS 1 I 
27 VCC +5 VOLT I 
28 CCK COLOR CLOCK I 
29 CCKQ COLOR CLOCK DELAY I 
30 AUDB RIGHT AUDIO 0 
31 AUDA LEFT AUDIO 0 
32 POTOX POT ox I/O 
33 POTOY POT OY I/O 
34 VSSANA ANALOG GROUND I 
35 POTlX POT lX I/O 
36 POT1Y POT lY I/O 
37 DKRD* DISK READ DATA I 
38 DKWD* DISK WRITE DATA 0 
39 DKWE DISK WRITE ENABLE 0 
40 TXD SERIAL TRANSMIT DATA 0 
41 RXD SERIAL RECEIVE DATA I 
42 D15 DATA BUS 15 I/O 
43 014 DATA BUS 14 I/O 
44 013 DATA BUS 13 I/O 
45 D12 DATA BUS 12 I/O 
46 D11 DATA BUS 11 I/O 
47 010 DATA BUS 10 I/O 

a 48 D9 DATA BUS 9 I/O 

c.:l 
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System Memory Map 
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ADDRESS RANGE NOTES 

000000-03EEEF 256k bytes. of RAM 

040000-07FEEF 256k bytes of di~lay RAM (option card) 

080000-lFEEFF Do not use 

200000-9EEEFF ~l ~ansion ~ace 

AOOOOO-BEEEFF Do not use 

BEDOOO-BEDEOO 8520-B (access only at EVEN byte addresses) 
= = 

BEE001-BEEE01 8520-A (access only at ODD byte addresses) 
= = 

The underlined digit chooses which of the 
16 internal registers of the 8520 is to be 
accessed. 

Register names are given below. 

COOOOO-DEEEEF 

DEEOOO-DEEFFF 

EOOOOO-E7FEFF 

E80000-EEEEEF 

FOOOOO-E7FEEF 

F80000-EEEEEF 

Reserved for future use 

Special purpose chips, where 
the last three digits specify 
the chip register hURD address. 

The chip addresses are specified 
in separate pages inmediatel y 
following this overall memory map. 

Reserved for future use - do not use 

Expansion slot decoding 

Reserved - do not use 

System RC»f 

DEVELOPMENT SYSTEM ROMs located at start address FEOOOO 

FINAL SYSTEM ROMs will probably be located at FeOOOO 

The names of the registers within the 8520s are 
as follows. The address at which each is to be 
accessed is given in this list. 

Address for: 

8520-A 8520-B I NAME I EXPLANATION 
-------------------------------------------------

BEE001 
BEE101 
BEE201 
BEE301 
BEE401 
BEE501 
BEE601 
BEE701 
BEE801 
BEE901 
BEEA01 
BEEB01 
BEEeOl 
BEEDOl 
BEEE01 
BEEE01 

BEDOOO 
BEDlOO 
BED200 
BED300 
BED400 
BEDSOO 
BED600 
BED700 
BEDSOO 
BED900 
BEDAOO 
BEDBOO 
BEDCOO 
BEDDOO 
BEDEOO 
BEDEOO 

PRA 
PRB 
DDRB 
DDRA 
TALO 
TAHI 
TBLO 
TBHI 

SDR 
ICR 
CRA 
CRB 

(write) / (read mode) 

Peripheral data register A 
Peripheral data register B 
Data direction register A 
Data direction register B 
TIMER A low register 
TIMER A high register 
TIMER B low register 
TIMER B high register 
Event LSB 
Event 8 - 15 
Event MS8 
No connect 
Serial data register 
Interrupt control register 
Control register A 
Control register B 



Appendix E 

Interfaces 

This appendix consists of four distinct parts, related to the way in which the Amiga 
talks to the outside world. 

The first part specifies the pinouts of the externally accessible connectors and the power 
available at each conIiector. It does not, however, provide timing or loading information. 

The second part briefly describes the functions of those pins whose purpose may not be 
evident. 

The third part contains a list of the connections for certain internal connectors, notably 
the disk. 
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The fourth part specifies how various signals relate to the available ports of the 8520. 
This information enables the programmer to relate the port addresses to the outside
world items (or internal control signals) that are to be affected. The third and fourth 
parts are primarily for the use of the systems programmer and should generally not be 
utilized by applications programmers. Systems software normally is configured to handle 
the setting of particular signals, no matter how the physical connections may change. In 
other words, if you have a version of the system software that matches the revision level 
of the machine (normally a true condition), when you ask that a particular bit be set, 
you don't care which port that bit is connected to. Thus, applications programmers 
should rely on system documentation instead of going directly to the ports. Note also 
that in a multitasking operating system, many different tasks may be competing for the 
use of the system resources. Applications programmers should follow the established 
rules for resource access in order to assure compatibility of their software with the sys
tem. 

See the figures at the end of this appendix for more information about the fire buttons, 
light pen, mouse, and the "pot" counters. 
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************** PART 1 - OUTSIDE ~RLD CONNECTORS ******************** KEYBOARD ••• RJ11 (J9) 

This is a list of the connections to the outside world on the Amiga. 1 +5 
2 CLOCK 

SERIAL COM ••• DB25 FEMALE (J6) (The center column is the AMIGI\ 3 DATA 
connection, the others are 4 GND 
specified in this table merely 
to show how the AMIGI\ RS-232-C 

ROB ••• DB23 MALE (J3) connection conpares to other 
defined interconnect methods.) 

1 XCLK* 13 GNDRTN (Return for XCLKEN*) 
2 XCLKEN* 14 ZD* 

PIN RS232 AMIGI\ HAYES DESCRIPTION 3 RED 15 Cl* 
---------------------------------------- 4 GREEN 16 GND 
1 GND GND FRAME GROUND 5 BLUE 17 GND 
2 TXD TXD TXD TRANSMIT DATA 6 DI 18 GND 
3 RXD RXD RXD RECEIVE DATA 7 DB 19 GND 
4 RTS RTS REQUEST TO SEND 8 00 20 GND 
5 CTS CTS CTS CLEAR TO SEND 9 DR 21 -5 VOLT POWER 
6 DSR DSR DSR DATA SET READY 10 CSYNC* 22 +12 VOLT POWER 
7 GND GND GND SYSTEM GROUND 11 HSYNC* 23 +5 VOLT POWER 
8 CD CD CD CARRIER DETECT 12 VSYNC* 
9 
10 
11 
12 S.SD SI 

TV VIDEO ••• 8 PIN DIN (J2) 

13 S.CTS 1 N.C. 
14 S.TXD -5 - 5 VOLT POWER 2 GND 
15" TXC AUOO AUDIO OUT OF AMIGI\. 3 AUDIO LEFT 
1& S.RXD AUDI AUDIO IN TO AMIGI\ 
17 RXC EB BUFFERED PORT CLOCK 716kHz 

4 COMP VIDEO 
5 GND 

18 INT2* INTERRUPT LINE TO AMIGI\ 6 N.C. 
19 S.RTS 7 +12 VOLT POWER 
20 DTR DTR DTR DATA TERMINAL READY 8 AUDIO RIGHT 
21 SQD +5 + 5 VOLT POWER 
22 RI RI 
23 SS +12 +12 volt power 
24 TXCI C2* 3 . 58 MHZ CLOCK 

DISK EXTERNAL ••• DB23 FEMALE (J7) 

25 RESB* BUFFERED SYSTEM RESET 1 ROY* 13 SIDEB* 
2 DKRD* 14 WPRO* 
3 GND 15 TKO* 

PARALLEL COM ••• DB25 MALE (J8) 4 GND 16 DKWEB* 
5 GND 17 DKWDB* 

1 DROY* 14 GND 6 GND 18 STEPB* 
2 DO 15 GND 7 GND 19 DIRB 
3 Dl 16 GND 8 MTRXD* 20 SEL3B* 
4 D2 17 GND 9 SEL2B* 21 SELIB* 
5 D3 18 GND 10 DRESB* 22 INDEX* 
6 D4 19 GND 11 CHNG* 23 +12 
7 D5 20 GND 12 +5 
8 D6 21 GND 
9 D7 22 GND 

t::l 
10 ACK* 23 + 5 
11 BUSY (data) 24 
12 POUT (elk) 25 RESET* 

~ 13 SEL 



tr:1 RAMEX ••• 60 PIN EDGE (.156) (Pl) EXPANSION ••• 86 PIN EDGE (.1) (P2) 

~ 1 gnd A gnd 1 gnd 44 IPL2* 
2 D15 B D14 2 gnd 45 Al6 
3 +5 C +5 3 gnd 46 BERR* 
4 012 D D13 4 gnd 47 Al7 
5 gnd E gnd 5 +5 48 VPA* 
6 D11 F DI0 6 +5 49 gnd 
7 +5 H +5 7 exp 50 E 
8 D8 J D9 8 -5 51 VMA* 
9 gnd K gnd 9 exp 52 Al8 
10 D7 L D6 10 +12 53 RES* 
11 +5 M +5 llexp 54 Al9 
12 D4 N D5 12 CONFIG 55 HLT* 
13 gnd P gnd 13 gnd 56 A20 
14 D3 R D2 14 C3* 57 A22 
15 +5 S +5 15 CDAC 58 A21 
16 DO T Dl 16 Cl* 59 A23 
17 gnd U gnd 170VR* 60 BR* 
18 DRA4 V DRA3 18 XRDY 61 gnd 
19 DRAS W DRA2 19 INT2* 62 BGACK* 
20 DRA6 X DRAl 20 PALOPE* 63 PD15 
21 DRA7 Y DRAO 21 AS 64 00* 
22 gnd Z gnd 22 INT6* 65 PD14 
23 RAS* AA. RRW* 23 A6 66 DTACK* 
24. gnd BB gnd 24 A4 67 PD13 
25, gnd CC gnd 25 gnd 68 PRW* 
26 CASUO* DD CASU1* 26 A3 69 PD12 
27 qnd EE gnd 27 A2 70 LDS* 
28 CASLO* FF CASL1* 28 A7 71 PDll 
29 +5 HH +5 29 Al 72 UDS* 
30 +5 JJ +S 30 AS 73 gnd 

31 FCO 74 AS* 
32 A9 75 PDO 
33 FCl 76 PDI0 
34 AlO 77PDl 
35 FC2 78 PD9 
36 All 79 PD2 
37 gnd 80 PD8 
38 Al2 81 PD3 
39 Al3 82 PD7 
40 IPLO* 83 PD4 
41 Al4 84PD6 
42 IPL1* 85 gnd 
43 Al5 86 PD5 



t::t:j 

C1l 

POWER ••• 7 PIN STRAIGHT (.156) (J14) 

1 -5 
2 +12 
3 gnd 
4 gnd 
5 +5 
6 +5 
7 tick 

JOY STICKS ••• DB9 male (J11 = right J12 = left) 

1 FORWARD' (MOUSE V) 
2 BACK* (MOUSE H) 
3 LEFT* (MOUSE VQ) 
4 RIGHT' (MOUSE HQ) 
5 POT X (or button 3 if used ) 
6 FIRE' (or button 1) 
7 +5 
8 GND 
9 POT Y (or button 2 ) 

The following port power allocation list is based on many things, 
including known peripheral requirements and existing power supply 
capabilities. These numbers are maximums for each port when used 
independently, but the numbers can be accumulated (except for 
joysticks) when a particular system configuration will guarantee 
th9~ it exclusively uses more than one port. 

The power pins of both joystick ports are tied together and to 
a current limited +5 supply. At present, the current limit is set 
at 700 ma peak with a 400 ma foldback at steady state short 
circuit conditions. The combined utilization of both ports is 
limited to 250 ma to insure a minimum voltage drop at the pins. 

PORT +5(ma) +12(ma) -5(ma) 
--------------
RF modulator 60 
RGB 300 175 50 
Serial 100 50 50 
External disk 270 160 
Parallel 100 
Expansion 1000 50 50 
Joystick 0 125 
Joystick l. 125 

""""""" PART 2 - MDRE OUTSIDE WORLD """""""""" 

PARALLEL INTERFACE CONNECTOR SPECIFICATION 

The 25-pin D-type connector with pins (DB25P=male) at the rear of the 
Amiga is nominally used to interface to parallel printers. In this 
capacity, data flows from the Amiga to the printer. This interface 
may also be used for input or bidirectional data transfers. The 
implementation is similar to Centronics, but the pin assignment and 
drive characteristics vary significantly from that specification 
(see Pin Assignment). Signal names correspond to those used in the 
other places in this appendix, when possible. 

PARALLEL CONNECTOR PIN ASSIGNMENT (J8) 

PIN NAME DIR NOTES 
1 DRDY' 0 Output-data-ready signal to parallel device in 

output mode, used in conjunction with ACK* (pin 10) 
for a two-line asynchronous handshake. 'Functions 
as input data accepted from Amiga in input mode 
(similar to ACK* in output mode). See timing 

2 DO 
3 D1 
4 D2 
5 D3 
6 D4 
7 D5 
8 D6 
9 D7 
10 ACK' 

11 BUSY 

12 POUT 

13 SEL 

14 GND 
15 GND 
16 GND 
17 GND 
18 GND 
19 GND 
20 GND 

I/O 
I/O 
I/O 
I/O 
I/O 
I/O 
I/O 
I/O 

I 

I/O 

I/O 

I/O 

diagrams in the following section. 

DO-D7 comprise an eight-bit bidirectional bus for 
communication with parallel devices, 
nominally, a printer. 

Output-data-acknowledge from parallel device in 
output mode, used in conjunction with DRDY' (pin 1) 
for a two-line asynchronous handshake. Functions as 
input-data-ready from parallel device in input mode 
(similar to DRDY' in output mode) . 
See timing diagrams. The 8520 can be programned to 
conditionally generate a level 2 interrupt to the 
68000 whenever the ACK* input goes active. 
This is a general purpose I/O pin shorted to a .. 
serial data I/O pin (serial clock on pin 12) . 
Note: Nominally used to indicate printer buffer full. 
This is a general purpose I/O pin shorted to a 
serial clock I/O pin (serial data on pin 11). 
Note: Nominally used to indicate printer paper out. 
This is a general purpose I/O pin. 
Note: nominally a select output from the parallel 
device to the Amiga. 



21 GND 
22 GND 
23 +5V 
24 

100 rna maximum. *** WARNING +SV. *** 

25 RESET* 0 Jlmiga system reset 

PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE 

PA<7:0> _________________ --: 

PB<7:0>---X X--
1<-- Tl --->1 1 

1 1<-------- T2 ------>1 V V, _______________ __ 

DRDY* -----------1 1 
Output data ready 1 < - T3 - > 1 

1<--- T4 --->1 
___________________ 1 <- T5 --> 1 ______ _ 

JItCK* 1 1 
Output data acknowledge 

Microseconds 
Min Typ Max 

Tl: 4.3 -x- 5.3 
;t'2: nsp -x- upc 
T3: nsp 1.4 nsp 
T4: 0 -x- upc 
T5: nsp -x- upc 

nsp = not specified 

Output data setup to ready delay. 
Output data hold time. 
Output data ready width. 
Ready to acknowledge delay. 
Acknowledge width. 

upc = under program control 

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE 

PA<7:0> _________________ --: 

PB<7:0>---X L 
1<-- Tl --->1 

1 T2 --> 1 <-----> I· ___________ V ____ 1 ______ _ 

JItCK* 1--- 1 
Input data ready 1<- T3 ->1 1 

1<-- T4 --->1 
__________________ 1 <- T5 --> 1 ______ _ 

DRDY* 
Input data acknowledge 

Microseconds 
Min Typ Max 

Tl: 0 -x- upc 
T2: nsp -x- upc 
T3: nsp -x- upc 
T4: upc -x- upc 

T5: nsp 1.4 nsp 

1 1 

Input data setup time. 
Input data hold time. 
Input data ready width. 
Input data ready to data 

acknowledge delay. 
Input data acknowledge width. 

nsp = not specified 
upc = under prograJl' control 

SERIAL INTERFACE CONNECTOR SPECIFICATION 

This 25-pin D-type connector with sockets (DB25S=female) is used to 
interface to RS-232-C standard signals. Signal names correspond to 
those used in other places in this appendix, when possible. 

WARNING: Pins 14, 21 and 23 carry pOwe:'". Do not connect to these 
pins inadvertently because they can permanently damage external 
equipment. Alsc, pins l5-le, 23-25 carry non-standard signals a,nd 
should not be connected. NEVER use a fully wired 25 line cablel 

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6) 

PIN NAME 
1 FGND 
2 TXD 
3 RXD 
4 RTS 
5 CTS 
6 OS1\. 
7 GND 
e CD 
S 
10 
11 
12 
13 

RS-232-C 
DI1\ STD NOTES 

Y Frame ground -- do not tie to logic ground 
o y Transmit data 
I y Receive data 
o y Request to send 
I y Clear to senG 
I y Data set ready 

y Signal ground -- do not tie to frame ground 
I y Carrier detect 

n 
n 
y 
n 
n 

-;>14 -SV r 15 AUOO 
n* 50 rna maximwr u* WARNING -SV *u 

o n* Audio output from left (channels 0, 3) port, 
intended to send audio to the modem. 

16 AUDI 

17 EH 

... 18 INT2* 

1S 
20 DTR 

~21 +5V 
22 

1-+23'1 +l2V 
.; 24 I C2* 

? I 
; 

I n* Audio input to right (channels 1, 2) port, 

0 n* 

I n· 

n 
0 Y 

nt 
n 
n* 

0 n* 

intended to receive audio from the modem; this 
input is mixed with the analog output of the 
right (channels 1,2). It is not digitized o~ 
used by the collputer in any way. 

716 KHz clock that supports 68000 peripheral 
transfers, intended for modem interface; this is 
the buffered version of the E clock from the 68000. 
Asserting this OPEN COLLECTOR signal will generate 
a level 2 interrupt to the 68000 if it is enabled. 

Data terminal ready. 
100 rna maximun: *** WARNING +5V *** 

50 rna maximwr. *** WARNING +12V *** 
3.58 MHz intended for modems that need a 
colorburst clock. 



25 RESB* 0 n* Amiga system reset. 

n* : See warning above 

SERIAL INTERFACE CONNECTOR TIMING 

Max.iJnum operating frequency is 19.2 KHz. Refer to EIA standard 
RS-232-C for operating and installation specifications. 
A rate of 31.25 KHz will be supported through the use of a MIDI adapter. 

Modem control signals (CTS, RTS, DTR, DSR, CD) are collpletely under 
software control. The modem control lines have no hardware affect 
on and are COIIpletely asynchronous to TXD and RXD. 

SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS 

OUTPUTS MIN TYP MAX 
Vo(-) : -2.5 -x- -5.5 V Negative output voltage range 
0/0 (+) : 8 -x- 13.2 V Positive output voltage range 
10: -x- 10 ma Output current 

INPUTS MIN TYP MAX 
Vi(+) : 3 -x- 25 V Positive input voltage range 
Vi (-) : -25 -x- .5 V Negative input voltage range 
Vhys: -x- l -x- V Input hysteresis voltage 
Ii: .3 -x- 10 ma Input current 

Unconnected inputs are interpreted the same as positive input 
voltages. 

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION 

The two 9-pin D-type connectors with pins (male) at the right of the 
Amiga nearer the front are used to interface to four types of devices: 

1. Mouse or trackball, 3 buttons max. 
2. Digital joystick, 2 buttons max. 
3. Proportional (pot or proportional joystick), 2 buttons max. 
4. Light pen, including pen-pressed-to-screen button. 

The connector pin assignments are discussed in sections organized 
by similar hardware and/or software operating requirements as shown 
in the previous list. Signal names follow those used elsewhere 
in this appendix, when possible. 

Jll is the right controller port connector (JOY1DAT, POT1DAT). 
J12 is the left controller port connector (JOYODAT, POTODAT). 

NOTE: While most of the hardware discussed below is directly 
accessible, hardware should be accessed through ROM kernel software. 
This will keep future hardware changes transparent to the user. 

GAME CONTROLLER INTERFACE TO MOUSEjTRACKBALL QUADRATURE INPUTS 

A mouse or trackball is a device that translates planar motion into 
pulse trains. Quadrature techniques are E!IIJlloyed to preserve the 
direction as well as magnitude of displacement. The registers JOYODA! 
and JOY1DAT become counter registers, with y displacement in the hig}". 
byte and x in the low byte. Movement causes the following action: 

Up. 
Down: 
Right: 
Left. 

y decrements 
y increments 
x increments 
x decrements 

To determine displacement, JOYxDAT is read twice with corresponding x 
and y values subtracted (careful, modulo 128 arithmetic). Note that 
if either count changes by more than 127, both distance and direction 
become ambiguous. There is a relationship between the sallpling 
interval and the max.iJnum speed (that is, change in distance) that 
can be resolved as follows: 

Velocity < Distance(max) / SallpleTime 

Velocity < SQRT(DeltaX**2 + DeltaY**2) / SampleTima 

For an Amiga with a 200 count-per-inch mouse sallpling during eacl: 
vertical blanking interval, the max.iJnum velocity in either the X or Y 
direction becomes: 

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec = 38 in/sec 

which should be sufficient for most users. 

NOTE: The Amiga software is designed to do mouse update cycles during 
vertical blanking. The horizontal and vertical counters are always 
valid and may be read at any time. 

CONNECTOR PIN USAGE FOR MOUSEjTRACKBALL QUADRATURE INPUTS 

PIN MNEMONIC DESCRIPTION HARDWARE REGISTERjNOTES 

1 V Vertical pulses JOY[O/l]DAT<15:8> 
2 H Horizontal pulses JOY[O/l]DAT(7:0> 
3 VQ Vertical quadrature pulses JOY[O/1]DAT<15:8> 
4 HQ Horizontal quadrature pulses JOY [0/1] DAT<7:0> 
5 UBUT* Unused mouse button See Proportional Inputs. 
6 LBUT* Left mouse button See Fire Button. 
7 +5V 125ma max, 200ma surge Total both ports. 
8 Ground 
9 RBUT* Right mouse button See Proportional Inputs.. 
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GAME PORT INTERFACE TO DIGITAL JOYSTICKS 

A joystick is a device with four normally opened switches arranged 90 
degrees apart. The JOY[O/l]DAT registers become encoded switch input 
ports as follows: 

Forward: 
Left: 
Back: 
Right: 

bit#9 xor bit#8 
bit#9 
bit#l xor bit#O 
bit#l 

Data is encoded to facilitate the mouse/trackball operating mode. 

NOTE: The right and left direction inputs are also designed to be 
right and left buttons, respectively, for use with proportional 
inputs. In this case, the forward and back inputs are not used, 
while right and left become button inputs rather than joystick inputs. 

The JOY[O/l]DAT registers are always valid and may be read at any time. 

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS 

PIN MNEMONIC DESCRIPTION 

1 FORWARD' Forward joystick switch 
2 BACK' Back joystick switch 
3 LEFT' Left joystick switch 
4 RIGHT' Right joystick switch 
5 Unused 
6 FIRE' Left mouse button 
7 +5V 12Sma max, 200ma surge 
8 Ground 
9 Unused 

GAME PORT INTERFACE TO FIRE BUTTONS 

HARDWARE REGISTERjNOTES 

JOY[0/1]DAT<9 xor 8> 
JOY[O/l]DAT(l xor 0> 
JOY [0/1] DAT<9> 
JOY [0/1] DAT<l> 

See Fire Button .. 
Total both ports. 

The fire buttons are normally opened switches routed to the 8520 
adapter PBAO as follows: 

PRAO bit 7 = Fire' left controller port 
PBAO bit 6 = Fire' right controller port 

Before reading this register, the corresponding bits of the data 
direction register must be cleared to define input mode: 

DDBAO<7:6> cleared as appropriate 

NOTE: Do not disturb the settings of other bits in DDBAO (Use of ROM 
kernel calls is recommended). 

Fire buttons are always valid and may be read at any time. 

CONNECTOR PIN USAGE FOR FIRE BUTl'ON INPUTS 

PIN MNEMONIC DESCRIPTION 

1 -x-
2 -x-
3 -x-
4 -x-
5 -x-
6 FIRE' Left mouse button/fire button 
7 -x-
8 -x-
9 -x-

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS 

Resistive ~tentiometer) element linear taper proportional 
controllers are supported up to 528k Ohms max (470k +/- 10% 
recommended). The JOY[O/l]DAT registers contain digital 
translation values for y in the high byte and x in the low byte. 
A higher count value indicates a higher external resistance. 
The Amiga performs an integrating analog-to-digital conversion 
as follows: 

1. POT[O/l]DAT registers are reset and the analog input capacitors 
are discharged for the first 7 (261 lines) or 8 (262 lines) 
horizontal lines. 

2. Once per horizontal line, each analog input is conpared to an 
internal reference. 

3. Any counter whose analog input exceeds the reference stops 
incrementing. The counter is stopped for the duration of the 
vertical frame. 

4. Any counter whose analog input is less than the reference 
continues to increment. 

NOTE: The POTY and POTX inputs are designated as "right mouse button" 
and "unused mouse button" respectively. An opened switch 
corresponds to high resistance, a closed switch to a low 
resistance. The buttons are also available in POTGO and 
POTINP registers. It is recommended that ROM kernel calls 
be used for future hardware conpatibility. 

The POT[O/l]DAT registers are typically read during video blanking, 
but MAY be available prior to that. 



CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS 

PIN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

MNEMONIC 

Unused 
Unused 

LBUT* 
RBUT* 
POTX 

Unused 
+5V 

Ground 
POT.( 

DESCRIPTION 

Left button 
Right button 
X analog in 

125ma max, 200 ma surge 

Y analog in 

HARDWARE REGISTER/NOTES 

See Digital Joystick 
See Digital Joystick 
POT[0/l]DAT<7:0>, POTOO, POTINP 

POT[O,l]DAT<15:8>, POTOO, POTINP 

CAME PORT INTERFACE TO LIGHT PEN 

A light pen is an optoelectronic device Whose light-sensitive portion 
is placed in proximity to a CRT. As the electron beam sweeps past the 
light pen, a trigger pulse is generated Which can be enabled to latch the 
horizontal and vertical beam positions. There is no hardware bit to 
indicate this trigger, but this can be determined in the two ways 
as shown in chapter 8, "Interface Hardware." 

Light pen position is usually read during blanking, but MAY be available 
prior to that. 

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS 

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES 

1 Unused 
2 Unused 
3 Unused 
4 Unused 
5 LPENPR* Light pen pressed See Proportional Inputs 
6 LPENTG* Light pen trigger VPOSR, VHPOSR 
7 +5V 125ma max, 200 ma surge Both ports 
8 Ground 
9 Unused 

EXTERNAL DISK INTERFACE CONNECTOR SPECIFICA.TION 

The 23-pin D-type connector with sockets (OB23S) at the rear of the 
Amiga is nominally used to interface to MFM devices. 

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7) 

PIN NAME DIR 
1 ROY* I/O 

2 DKRD* I 
3 GND 
4 GND 
5 GND 
6 GND 
7 GND 
8 MTRXD* OC 

9 SEL2B* OC 
10 DRESS* OC 

11 CHNG* I/O 

12 +SV 

13 SIDEB* 0 
14 WPRO* I/O 
15 TKO * I/O 

16 DKWEB* OC 
17 DKWDB* OC 
18 STEPB* OC 

19 DIRB OC 

20 SEL3B* OC 
21 SELIS* OC 
22 INDEX* I/O 

23 +12V 

NOTES 
If motor on, indicates disk installed and up to 
speed. If motor not on, identification mode. See 
below. 
MFM input data to Amiga. 

Motor on data, clocked into drive's motor-on 
flip-flop by the active transition of SELxB*. 
Guaranteed setup time is 1.4 usec. 
Guaranteed hold time is 1.4 usec. 
Select drive 2 
Amiga system reset. Drives should reset their 
motor-on flip-flops and set their write-protect 
flip-flops. 
Note: Nominally used as an open collector input. 
Drive's change flop is set at power up or when no 
disk is not installed. Flop is reset when drive is 
selected and the head stepped, but only if a disk 
is installed. 
270 ma maximum; 410 ma surge 
When below 3.7SV, drives are required to reset 
their motor-on flops, and set their write-protect 
flops. 
Side 1 if active, side 0 if inactive 
Asserted by selected, write-protected disk. 
Asserted by selected drive when read/write head 
is positioned over track O. 
Write gate (enable) to drive. 
MFM output data from Amiga. 
Selected drive steps one cylinder in the direction 
indicated by DIRB. 
Direction to step the head. Inactive to step 
towards center of disk (higher-nwnbered tracks) • 
Select drive 3. 
Select drive 1. 
Index is a pulse generated once per disk revolution, 
between the end and beginning of cylinders. The 
8520 can be programmed to conditionally generate a 
level 6 interrupt to the 68000 whenever the INDEX* 
input goes active. 
160 ma maximum; 540 ma surge. 



EXTERNAL DISK CONNECTOR IDENTIFICATION KIDB 

An identification mode is provided for reading a 32-bit serial 
identification data stream from an external device. To initialize 
this mode, the motor ImlSt be turned on, then off. See pin 8, 
MTRXD* for a discussion of how to turn the motor on and off. The 
transition from motor on to motor off reinitia1izes the serial 
shift register. 
After initialization, the SELxB* signal should be left in the 
inactive state. 
Now enter a loop where SELxB* is driven active, read serial input 
data on ROY* (pin 1), and drive SELxB* inactive. Repeat this loop 
a total of 32 times to read in 32 bits of data. The most significant 
bit is received first. 

EXTERNAL DISK CONNECTOR DEFINED IDENTIFlCA.TIONS 

$0000 0000 - no drive present. 
$FFFF FFFF - Amiga standard 3.25 diskette. 
$5555 5555 - 48 !PI double-density, double-sided. 

As with other peripheral IO's, users should contact Commodore-Amiga 
for 10 assignment. 
The serial input data is active low and must therefore be inverted 
to be consistent with the above table. 

EXTERNAL DISK CONNECTOR LIMITATIONS 

1. The total cable length, including daisy chaining, must not exceed 
1 meter. . 

2. A maximum of 3 external devices may reside on this interface. 

3. Bach device must provide a 1000-Ohm pull-up resistor on those 
outputs driven by an open-colleCtor device on the Amiga 
(pins 8-10, 16-21). 

•••••••••••••• PART 3 - INTERNAL CONNE~ ••••••••••••• **.*** 

DISK INTERNAL ••. 34 PIN RIBBON (J10) 

1 GND 18 DIRB 
2 CHNG* 19 GND 
3 GND 2e STEPB* 
4 MTROD* (led) 21 GND 
5 GND 22 DKWDB* 
6 N.C. 23 GND 
7 GND 24 DKWEB* 
8 INDEX* 25 GND 
9 GND 26 TKO* 
10 SELOB* 27 GND 
11 GND 28 WPRO* 
12 N.C. 29 GND 
13 GND 30 DKRD* 
14 N.C. 31 GNr 
15 GND 32 SIDEB· 
16 MTROD* 33 GND 
17 GND 34 ROY* 

DISK INTERNAL POWER ••• 4 PIN STRAIGHT (J13) 

1 +12 
2 GND 
3 GND 
4 +5 



••••••• * •• PART 4 - PORT SIGNAL ASSIGNMENTS FOR 8S20 .*********** 

Address BFFROl data bits 7-0 (Al2*) (int2) 

PA7 •• game port 1, pin 6 (fire button*) 
PAG .. game port 0, pin 6 (fire button·) 
PAS •. RDY* disk ready* 
PA4 •. TKO. disk track 00* 
PA3 •• WPRO* write protect· 
PA2 .• CHNG* disk change· 
PAl .. LEO. led light (O=bright) 
PAO •• CNL memory overlay bit 

SP ••• KDAT 
CNT •• KCLK 
PB7 •. P7 
PBG •. P6 
PBS .. PS 
PM •. P4 
PB3 .. P3 
PB2 •. P2 
PBl. .Pl 
PBO •. PO 

PC ••• drdy* 
F •••• ack· 

keyboard data 

data 7 
data 6 
data S 
data 4 
data 3 
data 2 
data 1 
data 0 

Centronics parallel interface 
data 

Centronics control 

Address BFDRFE data bits lS-8 (Al3.) (int6) 

PA7 •• com line om., driven output 
PA6 •• com line RTS., driven output 
PAS •. cam line carrier detect· 
PA4 •• com line CTS· 
PA3 •• com line OSR. 
PA2 .. SEL Centronics control 
PAl •. POUT paper out ---+ 
PAD •• BUSY busy ---+ I 

I I 
SP ••• BUSY cO!llllOdore -+ I 
CNT •. POUT cO!IIIlOdore ---+ 
PB7 •. MTR. 
PBG .. SEL3. 
PBS .. SEL2. 
PM •. SEL1. 
PB3 .. SELO. 
PB2 •. SIDE· 
PBl. .DIR 
PBO •• STEP* 

t:I:j PC ••• not used 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st drive 
select internal drive 
side select· 
direction 
step· 

F •••. INDEX. disk index· 



PORTO 

° ° 
° ° ° 

6 
w 
a: 
U- 7 

/' 6 ..-
w w 
a: a: 
U-

PORT 1 

° 
FI RE1\ 

DON'T TRASH THESE BITS 

o 

TYPICAL 

o 0 o I 1 

° 

0 

° 
° ° 

PRAO 
BFEOFF 

Data Direction 
DDRAO 
BFE2FF 
R/W Red 

IN IN OUT 

Reading FIRE BUTTONS 

.. To front of machine 

PORT 0 = Left 

> 
w 
Cf) 

:J 
0 
~ 

6 
0 
a: 
« 
~ 
a: 
0 
U-

MOUSE 0 
Y Counter 

Vertical 

MOUSE Counters 

E - 12 

6 
° 
I 
w 
Cf) 

:J 
0 
~ 

6 
~ 
U « 
ell 

2 3 4 

7 8 
° ° 
3 3 

I 
> w 
w Cf) 

Cf) :J 
:J 0 
0 ~ 
~ 

6 
6 
I-

l- I 
U-
w 

(!) 

-l a: 

5 

9 ° 
° 

MOUSEO 
X Counter 

Horizontal 

PORT 1 1 2 3 4 5 

°6°7°8°9° 
° ° ° 

JOY1DAT 
DFOOC 
is wired similarly 
for PORT 1 

JOYODAT 
DFFOOA 
Read Only 

° 



VPOSR Read Only 
DFFOO4 

I VHPOSR Read Only 
DFFOO6 

~----------------------------~ 

I I BPLCONO Write Only 

~~I~~~~~~~~~~L!~!-L-L!-J. DFF104 
15 3 0 

1-1 ------ Light Pen Enable 

I POTINP Read Only 

,":--~I ......... ~~~~!~!~~~L...-L..! _L..! -LI -LI ~ DFF016 (Bit 8) 

151 PEN PRES~ = POTOX 

PORTO 

Light Pen 

LIGHT PEN +-- latches V & H positions 

E - 13 



E - 14 



PORT 1 Connector 

O 
Pin 5 

o 0 0 0 
o 0 0 Pin 9 

47nf

T 
V 

POT COUNTER 

POT1X POT1DAT POT1Y 
COUNTER COUNTER DFF014 

'--__ ~~-L--.....:...:..:....~ Read Only 

>
a:: 
I
:::> 
o 

>
a:: 

~ 
o 

BIT 15 • • 

14 

POTGO 
DFF034 
Write Only 

XX>->-XX I-
a::a::...J...J...J...J a:: 
1-1-1-1-1-1- ...... :::><{:::><{:::><{ ..... 
0000 0 oXxxxxxx~ 

• • • • • • BITO 

o 

POTINP 
DFF016 
Read Only 

E - 15 



PORTO 

\ 5 J 
9 / 
- I 

PORT 1 

\ 
} 

--, 
- I 

POT COUNTERS 

E -16 

POTOX 

POTOY 

+ 
PO TOY 
COUNTER 

POT1X 

POT1Y 

~ 
POT1Y 
COUNTER 
LATCH 

POTOX 
COUNTER 

POT1X 
COUNTER 
LATCH 

POTODAT 
DFF012 

POTlDAT 
DFF014 

I I POTGO 
'--________ L.I DFF034 

I :OTINP 
'----------...... DFF016 



Appendix F 

Peripheral Interface Adapters 

This appendix contains information about the 8520 peripheral interface adapters. 
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QUICK REE'ERENCE •• BRIEF ADDRESS MAP FOR 8520S 

The systEm hardware selects the 8520s (also called CIAs) when the 
upper three address bits are 101. Furthermore, ClM is selected 
when Al2 is low, Al3 high; CIAB is selected when Al2 is high, Al3 low. 

You can use either byte or word addresses to access the 8520s. 
For byte access (seems to be the usual case), AO must be 0 for ClM, 
1 for CIAB. For word access, CIAB COIIIIIUl1icates on data bits 15-8; 
ClM conmmicates on data bits 7-0. (AO is always 0 for word access, 
natura11y.) 

Address bits All, AlO, A9, and AS are used to specify which of the 16 
internal registers you want to access. This is indicated by "r" in 
the address. A11 other bits are don't cares. So, ClM is selected 
by the fo11owing binary address: 10lx xxxx xxOl rrrr xxxx xxxO. 
CIAB address: 10lx xxxx xxlO rrrr xxxx xxx! 

With future expansion in mind, we have decided on the following 
addresses: ClM = BFErOl; CIAB = BFDrOO. 

CIAB Address Map 

Byte Register 
Address Name 7 6 

Data bits 
543 2 1 o 

BFDOOO 
BFDIOO 
BFD200 
BFD300 
BFD400 
BFD500 
BFD600 
BFD700 
BFD800 
BFD900 
BFDA.OO 
BFDBOO 
BFDCOO 
BFOOOO 
BFDEOO 
BFDE'OO 

/fYJ:R /RTS /CD /crs /DSR SEL POUT BUSY 
/MTR /SEL3 /SEL2 /SELl /SELO /SlDE DlR /STEP 
ddr for port A (BFDOOO); 1 = output (set to OXCO) 
ddr for port B (BFDIOO); 1 = output (set to OxFF) 
CIAB timer A low byte 
CIAB timer A high byte 
ClAB timer B low byte 
CIAB timer B high byte 
Horizontal sync event counter bits 7-0 
Horizontal sync event counter bits 15-8 
Horizontal sync event counter bits 23-16 
not used 
ClAB serial data register 
CIAB interrupt control register 
CIAB Control register A 
CIAB Control register B 

Note: CIAB can generate INT6. 

CIAA Address Map 

Byte Register 
Address Name 7 6 

Data bits 
4 3 o 2 1 5 

BFEOOl 
BFEIOl 
BFE201 
BFE301 
BFE401 
BFE50l 
BFE60l 
BFE701 
BFEBOl 
BFE901 
BFEAOl 
BFEBOl 
BFECOl 
BFEDOl 
BFEEOl 
BFEFOl 

/FIRl /FIRO /BDY /TKO jWPRO /CHNG IUD OVL 
Para11e1 port 
ddr for port A (BFEOOl); l=output (set to OX03) 
ddr for port B (BFElOl) ;l=output (can be in or out) 
ClM timer A low byte 
ClM timer A high byte 
ClM timer B low byte 
ClM timer B high byte 
60 Hz event counter bits 7-0 
60 Hz event counter bits 15-8 
60 Hz event counter bits 23-16 
not used 
ClM serial data register (keyboard) 
ClM interrupt control register 
ClM control register A 
ClM control register B 

Note: ClM can generate INT2. 

............................................................. , ..... 
INTERFACE SIGNALS 

Clock input 

The 02 clock is a TTL COIIpatib1e input used for internal device 
operation and as a timing reference for COIIIIIUl1icating with the 
systEm data bus. 

CS - chip-select input 

The CS input controls the activity of the 8520. A low level on CS. 
while 02 is high causes the device to respond to signals on the R/W 
and address (RS) lines. A high on CS prevents these lines from 
contro11ing the 8520. The CS line is norma11y activated (lOW) at 
02 by the appropriate address combination. 

R/W - read/write input 

The R/W signal is norma11y supplied by the microprocessor and 
controls the direction of data transfers of the 8520. A high on 
R/W indicates a read (data transfer out of the 8520), while a 
low indicates a write (data transfer into the 8520) • 



RS3-RSO - address inputs 

The address inputs select the internal registers as described by 
the register map. 

DB7-DBO - data bus inputs/outputs 

The eight data bus output pins transfer information between the 8520 
and the system data bus. These pins are high inpedance inputs unless 
CS is low and R/W and 02 are high, to read the device. During this 
read, the data bus output buffers are enabled, driving the data from 
the selected register onto the system data bus. 

IRQ - interrupt request output 

IRQ is an open drain output normally connected to the prcx.essor 
interrupt input. An external pull-up resistor holds the signal 
high, allowing multiple IRQ outputs to be connected together. The 
IRQ output is normally off (high inpedance) and is activated low 
as indicated in the functional description. 

RES - reset input 

A low on the RES pin resets all internal registers. The port pins 
are set as inputs and port registers to zero (although a read of 
the ports will return all highs because of passive pull-ups) • 
The timer control registers are set to zero and the timer latches 
to all ones. All other registers are reset to zero. 

REGISTER MAP 

Each 8520 has 16 registers that you may read or write. Here is the 
list of registers and the access address of each within the memory 
space dedicated to the 8520: 

Register 
RS3 RS2 RSl RSO :# (hex) NAME MEANING 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

0 0 0 0 PRA Peripheral data register A 
0 It 1 1 PRB Peripheral data register B 
0 1 0 2 DORA Data direction register A 
0 1 1 3 DDRB Direction register B 
1 0 0 4 TALC> Timer A low register 
1 0 1 5 TAHI Timer A high register 
1 1 0 6 TBLO Timer B low register 
1 1 1 7 TBHI Timer B high register 
0 0 0 8 Event LSB 
0 0 1 9 Event 8-15 
0 1 0 A Event MSB 
0 1 1 \ ~, No connect 
1 0 0 C SDR Serial data register 
1 0 1 D, ICR Interrupt control register 
1 1 0 E ' , CRA Control register A 
1 1 1 F ' CRB Control register B 

SOFTWARE NOTE: 

The operating system kernel has already allocated the 
use of all four of the timers TA and TB in the 8520s. 
If you are running under control of the system exec, 
be aware of the follOWing allocation of system resources: 

8520A, timer A -- CoDmodore serial COIIIIIUDications 
(if no serial COIIIIIUDications is 
happening, timer becomes available). 

8520A, timer B -- Video beam follower 
(used when synchronizing the bl1tter 
device to the video beam, see the 
description of QBSBl1t () in the system 
software manual). If no beam-sync'ed 
bl1ts are in process, this timer 
will be available. 

8520B, timer A -- Keyboard (used continuously, whenever 
system Exec is in control) • 

8520B, timer B -- Virtual timer device (used 
continuously whenever system Exec is 
in control; used for task switching 
and interrupts) • 

REGISTER NAMES 

The names of the registers within the 8520s are as follows. The 
address at which each is to be accessed is given in this l1st. 
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Address for: 
-----------------
8520-A 8520-B I NAME I EXPLANATION 
-------------------------------------------------

(write)/(read mode) 

BFEOOl BFOOOO PRA Peripheral data register A 
BFEIOl BFOIOO PRB Peripheral data register B 
BFE201 BF0200 OORB Data direction register "A" 
BFE301 BF0300 DORA Data direction register "B" 
BFE401 BFD400 TALC TIMER A low register 
BFESOl BFOSOO TAHI TIMER A high register 
BFE601 BFD600 TBLO TIMER B low register 
BFE?Ol BFO?OO TBHI TIMER B high register 
BFE801 BFD800 Event LSB 
BFE901 BFD900 Event 8 - 15 
BFEAOl BFDAOO Event MSB 
BFEBOl BFOBOO No connect 
BFECOl BFDCOO SOR Serial data register 
BFEOOl BFDOOO ICR Interrupt control register 
BFEEOl BFOEOO CRA Control register A 
BFEFOl BFDFOO CRB Control register B 

REGISTER FUNCTIONAL DESCRIPTION: 

I/O PORTS (PRA, PRB, DORA, DDRB) 

Ports A and B each consist of an a-bit peripheral data register (PR) 
and an a-bit data direction register (OOR). If a bit in the OOR is 
set to a 1, the corresponding bit position in the PR becomes an 
output. I f a OOR bit is set to a 0, the corresponding PR bit is 
defined as an input. 

When you READ a PR register, you read the actual current state of 
the I/O pins (PAO-PA?, PBO-PB?, regardless of whether you have set 
them to be inputs or outputs. 

Ports A and B have passive pull-up devices as well as active 
pull-ups, providing both CMOS and TTL corrpatibility. Both ports 
have two TTL load drive capability. 

In addition to their normal I/O operations, ports PB6 and PB? also 
provide timer output functions. 

HANDSHAKING 

Handshaking occurs on data transfers using the PC output pin 
and the FLAG input pin. PC will go low on the third c:yc:le 
after a port B access. This signal can be used to indicate 
"data ready" at port B or "data accepted" from port B. 
Handshaking on 16-bit data transfers (using both ports A and B) 
is possible by always reading or writing port A first. FLAG 

is a negative edge-sensitive input that can be used for 
receiving the PC output from another 8520 or as a general
purpose interrupt input. Any negative transition on FLAG 
will set the FLAG interrupt bit. 

REG NAME D7 D6 05 D4 D3 D2 Dl DO 

o 
1 
2 
3 

PRA 
PRB 
DORA 
DORB 

PA? PA6 PAS PM PA3 PA2 PAl PAD 
PB? PB6 PBS PB4 PB3 PB2 PBl PBO 
DPA? DPA6 OPAS OPM OPA3 OPA2 DPAl OPAO 
DPB? OPB6 OPBS DPB4 DPB3 OPB2 OPBl OPBO 

INTERVAL TIMERS (TIMER A, TIMER B) 

Each interval timer consists of a l6-bit read-only timer 
counter and a l6-bit write-only timer latch. Data written 
to the timer is latched into the timer latch, while data 
read from the timer is the present contents of the timer 
counter. 

The latch is also called a prescalar in that it represents 
the countdown value which must be counted before the timer 
reaches an underflow (no more counts) condition. This latch 
(prescalar) value is a divider of the input clocking frequency. 
The timers can be used independently or llnked for extended 
operations. Various timer operating modes allow generation 
of long time delays, variable width pulses, pulse trains, and 
variable frequency waveforms. Utilizing the CNT input, the 
timers can count external pulses or measure frequency, pulse 
Width, and delay times of external signals. 

Each timer has an associated control register, providing 
independent control over each of the following functions: 

START/STOP 

A control bit allows the timer to be started or stopped 
by the microprocessor at any time. 

PB on/off 

A control bit allows the timer output to appear on a port B 
output line (pB6 for timer A and PB? for timer B). This 
function overrides the DORB control bit and forces the 
appropriate PB line to become an output. 

Toggle/pulse 

A control bit selects the output applied to port B while 
the PB on/off bit is ON. On every timer underflow, the 
output can either toggle or generate a single positive 
pulse of one cycle duration. The toggle output is set 
high whenever the timer is started, and set low by RES. 



One-shot/continuous 

A control bit selects either timer mode. In one-shot mode, 
the timer will count down from the latched value to zero, 
generate an interrupt, reload the latched value, then stop. 
In continuous mode, the timer will count down from the 
latched value to zero, generate an interrupt, reload the 
latched value, and repeat the procedure continuously. 

In one-shot mode, a write to timer-high (register 5 for 
timer A, register 7 for Timer B) will transfer the timer 
latch to the counter and initiate counting regardless of 
the start bit. 

Force load 

INPUT K>DES 

A strobe bit allows the timer latch to be loaded into the 
timer counter at any time, whether the timer is running or 
not. 

Control bits allow selection of the clock used to decrement the 
timer. Timer A can count 02 clock pulses or external pulses 
applied to the CNT pin. Timer B can count 02 pulses, external 
CNT pulses, timer A underflow pulses, or timer A underflow pulses 
while the CNT pin is held high. 

The timer latch is loaded into the timer on any timer underflow, on 
a force load, or following a write to the high byte of the pre
scalar while the timer is stopped. If the timer is running, a write 
to the high byte will load the timer latch but not the counter. 

BIT NAMES on READ-register 

REG NAME 07 D6 05 D4 03 02 01 DO 

4 
5 
6 
7 

TALO 
TAHI 
TBLO 
TBHI 

TAL 7 TAL6 TALS TAL4 TAL3 TAL2 TALI TALO 
TAH7 TAR6 TAH5 TAR4 TAR3 TAR2 TAHl TARO 
TBL 7 TBL6 TBLS TBL4 TBL3 TBL2 TBLI TBLO 
TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBHl TBHO 

BIT NAMES on WRITE-register 

REG NAME 07 D6 05 D4 03 02 01 DO 

4 
5 
6 
7 

TALC 
TAHI 
TBLO 
TBHI 

PAL 7 PAL6 PALS PAL4 PAL3 PAL2 PALl PALO 
PAIr7 PAR6 PARS PAR4 PAR3 PAH2 PAR1 PARO 
PBL 7 PBL6 PBLS PBL4 PBL3 PBL2 PBL1 PBLO 
PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBHl PBHO 

TIME OF DAY CLOCK 

TOO consists of a 24-bit binary counter. Positive edge transitions 
on this pin cause the binary counter to increment. The TOO pin has a 
passive pull-up on it. 

A programmable alarm is provided for generating an interrupt at a 
desired time. The alarm registers are located at the same addresses 
as the corresponding TOO registers. Access to the alarm is governed 
by a control register bit. The alarm is write-only; any read of a 
TOO address will read time regardless of the state of the ALARM 
access bit. 

A specific sequence of events nrust be followed for proper setting and 
reading of TOO. TOO is automatically stopped whenever a write to the 
register occurs. The clock will not start again until after a 
write to the LSB event register. This assures that TOO will always 
start at the desired time. 

Since a carry from one stage to the next can occur at any time 
with respect to a read operation, a latching function is included 
to keep all TOO information constant during a read sequence. 
All TOO registers latch on a read of MEB event and remain latched 
until after a read of LSB event. The TOO clock continues to count 
when the output registers are latched. If only one register is to 
be read, there is no carry problem and the register can be read 
"on the fly" provided that any read of MEB event is followed by a 
read of LSB Event to disable the latching. 

BIT NAMES for WRITE TIME/ALARM or READ TIME 

REG NAME 

8 LSB Event E7 E6 ES E4 E3 E2 
9 Event 8-15 E1S E14 El3 E12 Ell E10 
A MEB Event E23 E22 E21 E20 E19 E18 

WRITE 
CRB7 = 0 
CRB7 = 1 ALARM 

SERIAL PORT (SDR) 

E1 EO 
E9 E8 
E17 E1G 

The serial port is a buffered, 8-bit synchronous shift register. 
A control bit selects input or output mode. 

INPUT K>OE 

In input mode, data on the SP pin is shifted into the shift 
register on the rising edge of the signal applied to the CNT pin. 
After eight CNT pulses, the data in the shift register is dUllped 
into the serial data register and an interrupt is generated. 



OUTPUT K>DE 

In the output mode, Timer A is used as the baud rate generator. 
Data is shifted out on the SP pin at 1/2 the underflow rate of 
T~.mer A. The maxilrrum baud rate possible is 02 divided by 4, but 
the maxinrum usable baud rate will be detennined by line loading and 
the speed at which the receiver responds to input data. 

To begin transmission, you must first set up Timer A in continuous 
mode, and start the timer. Transmission will start following a 
write to the serial data register. The clock signal derived from 
Timer A appears as an output on the CNT pin. The data in the serial 
data register will be loaded into the shift register, then shifted 
out to the SP pin when a CNT pulse occurs. Data shifted out 
becomes valid on the next falling edge of CNT and remains valid 
until the next falling edge. 

After eight CNT pulses, an interrupt is generated to indicate that 
more data can be sent. If the serial data register was reloaded 
with new information prior to this interrupt, the new data will 
automatically be loaded into the shift register and transmission 
will continue. 

If no further data is to be transmitted after the eighth CNT pulse, 
CNT will return high and SP will remain at the level of the last 
data bit transmitted. 

SDR data is shifted out MSB first. Serial input data should appear 
in this same format. 

BIDIRECTIONAL FEA'l'URE 

'!be bidirectional capability of the serial port and CNT clock allows 
many 8520s to be connected to a conmon serial colllllUnications bus on 
which one 8520 acts as a master, sourcing data and shift clock, 
while all other 8520 chips act as slaves. Both CNT and SP outputs 
are open drain to allow such a conmon bus. Protocol for 
master/slave selection can be transmitted over the serial bus or 
via dedicated handshake lines. 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 

c SDR 57 S6 S5 54 S3 S2 S1 SO 

INTERRUPT CONTROL REGISTER (ICR) 

'lbere are five sources of interrupts on the 8520: 

-Underflow from Timer A (timer counts down past 0) 
-Underflow from Timer B 
-TOD alarm 
-Serial port full/enpty 
-Flag 

A single register provides masking and interrupt information. '!be 
interrupt control register consists of a write-only MASK register 
and a read-only DATA register. Any interrupt will set the 
corresponding bit in the DATA register. Any interrupt that is 
enabled by a 1-bit in that position in the MASK will set theIR bit 
(MSB) of the DATA register and bring the IRQ pin low. In a 
multichip system, the IR bit can be polled to detect which chip has 
generated an interrupt request. 

When you read the DATA register, its contents are cleared (set to 0), 
and the IRQ line returns to a high state. Since it is cleared on a 
read, you must assure that your interrupt polling or interrupt service 
code can preserve and respond to all bits which may have been set in 
the DATA register at the time it was read. With proper preservation 
and response, it is easily possible to intermix polled and direct 
interrupt service methods. 

You can set or clear one or more bits of the MASK register without 
affecting the current state of any of the other bits in the register. 
This is done by setting the appropriate state of the MSBit, which is 
called the set/clear bit. In bits 6-0, you yourself form a mask 
that specifies which of the bits you wish to affect. Then, using 
bit 7, you specify HOW the bits in corresponding positions in the 
mask are to be affected. 

o If bit 7 is a 1, then any bit 6-0 in your own mask word 
which is set to a 1 sets the corresponding bit in the 
MASK register. Any bit that you have set to a 0 causes 
the MASK register bit to remain in its current state. 

o If bit 7 is a 0, then any bit 6-0 in your own mask word 
which is set to a 1 clears the corresponding bit in the MASK 
register. Again, any 0 bit in your own mask word causes no 
change in the contents of the corresponding MASK register bit. 

I f an interrupt is to occur based on a particular condition, 
then that corresponding MASK bit must be a 1. 

Exanple: Suppose you want to set the Timer A interrupt bit 
(enable the Timer A interrupt), but want to be 
sure that all other interrupts are cleared. Here 
is the sequence you can use: 

movi.b 01111110B,AO 
mov.b AO,ICR ;MSB is 0, means clear 

;any bit whose value is 
; 1 in the rest of the byte 

movi.b 10000001B,AO 
mov.b AO,ICR ;MSB is 1, means set 

;any bit whose value is 
; 1 in the rest of the byte 
; (do not change any values 
; wherein the written value 
; bit is a zero) 



Read interrupt control register: 

REG NAME rn D6 OS D4 03 02 01 DO 

o ICR IR o o FLG SP ALRM TB TA 

Write interrupt control MASK: 

REG NAME rn D6 OS D4 03 02 01 DO 

o ICR SIC x x FLG SP ALRM TB TA 

CONTROL REGISTERS 

'!here are two control registers in the 8520, CRA and CRB. CRA is 
associated with Timer A and CRB is associated with Timer B. The 
format of the registers is as follows: 

CONTROL REGISTER B: 

BIT NAME 

o 

1 

2 
3 
4 

START 

PIlON 

OU'OOOE 
RUNMODE 
LOAD 

FUNCTION 

1 = start Timer B, 0 = stop Timer B. 
This bit is automatically reset (= 0) when 
underflow occurs during one-shot mode. 

1 = Timer B output on PB7, 0 = PB7 is normal 
operation. 

1 = toggle, 0 = pulse. 
1 = one-shot mode, 0 = continuous mode. 
1 = force load (this is a strobe input, there is no 

data storage; bit 4 will always read back a 
zero and writing a 0 has no effect.) 

6,5 INK>OE Bits CRB6 and CRBS select one of four possible 
input modes for Timer B, as follows: 

CRB6 CRBS Mode Selected 
CONTROL REGISTER A: ---------------------------------------
BIT NAME FUNCTION 

o START 1 = start Timer A, 0 = stop Timer A. 
This bit is automatically reset (= 0) when 
underflow occurs during one-shot mode. 

1 

2 

PBON 1 = Timer A output on PB6, 0 = PB6 is normal operation. 

OU'OOOE 1 = toggle, 0 = pulse. 

3 RUNMJOE 1 = one-shot mode, 0 = continuous mode. 

4 LOAD 1 = force load (this is a strobe input, there is no 
data storage; bit 4 will always read back a zero 
and writing a 0 has no effect.) 

5 INMODE 1 = Timer A counts positive CNT transitions, 
o = Timer A counts 02 pulses. 

6 SPK>DB 1 = Serial port=output (CNT is the source of the shift 
clock) 

o = Serial port=input (external shift clock is 
required) 

BIT MAP OF REGISTER CRA: 

REG# NAME TOO IN SPK>DB INM:>DB LOAD RUNMJOB OU'D«>DE PBON START 

E CRA 0=60Hz O=input 0=02 l=force O=cont. O=pulse 0=PB6OFF O=stop 
1=50Hz l=output 1=CNT load l=one- l=toggle l=PB60N l=start 

(strobe) shot 

1<-------- Timer A Variables ----------------->1 

All unused register bits are unaffected by a write and forced to 0 on a read. 

7 ALARM 

o 
o 
1 
1 

o 
1 
o 
1 

Timer B counts 02 pulses 
Timer B counts positive CNT transitions 
Timer B counts Timer A underflow pulses 
Timer B counts Timer A underflow pulses 

while CNT pin is held high. 

1 = writing to TOO registers sets Alann 
o = writing to TOO registers sets TOO clock. 

Reading TOO registers always reads TOO clock, 
regardless of the state of the Alann bit. 

BIT MAP OF REGISTER CRB: 

REG 
:# NAME ALARM INK>DE LOAD RUNMODE OU'OOOE PIlON START 

F CRB 0='1'00 00=02 l=force O=cont. O=pulse O=PB7OFF O=stop 
l=Alann 01=CNT load l=one- l=toggle 1=PB7ON l=start 

10=Timer A (strobe) shot 
l1=CNT+ 

Timer A 

I<----------------Timer B Variables--------------->I 

All unused register bits are unaffected by a write and forced to 0 on 
a read. 

PORT SIGNAL ASSIGNMENTS 

This part specifies how various signals relate to the available ports 
of the 8520. This information enables the progralllllel" to relate the 
port addresses to the outside-world items (or internal control signals) 
which are to be affected. This part is primarily for the use of the 
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systems programner and should generally not be used by applications 
programners. Systems software nonnally is configured to handle the 
setting of particular Signals, no matter how the physical connections 
may change. In other words, if you have a version of the system 
software that matches the rev. level of the machine (nonnally a true 
condition), when you ask that a particular bit be set, you don't care 
which port that bit is connected to. Thus applications progranmers 
should rely on system documentation rather than going directly to the 
ports. Note also that in this, a multi-tasking operating system, many 
different tasks may be conpeting for the use of the system resources. 
Applications programmers should follow the established rules for 
resource access in order to assure coupat1hl1ity of their software 
with the system. 

Address BFERFF data bits 7-0 (Al2*) (int2) 

PA7 .. game port 1, pin 6 (fire button*) 
PA6 .. game port 0, pin 6 (fire button*) 
PAS •. ROY. disk ready' 
PA4 .. TKO. disk track 00* 
PA3 .. WPRO* write protect* 
PAl •. CHNG' disk change' 
PAl .. LED. led light (O=bright) 
PAO . .fNL memory overlay bit 
SP ••• KDAT keyboard data 
CNT •• KCLK 
PB7 .• P7 
PB6 .. P6 
PBS •• PS 
PB4 .• P4 
PB3 .. P3 
PB2 •. P2 
PBl. .Pl 
PBO •. PO 
PC ••• drdy* 
F •••• ack· 

data 7 
data 6 
data 5 
data 4 
data 3 
data 2 
data 1 
data 0 

Centronics parallel interface 
data 

centronics control 

Address BEDRFE data bits 15-8 (Al3*) (int6) 

PA7 •• com line D'lR*, driven output 
PA6 •• com line RTS*, driven output 
PAS •• com line carrier detect* 
PM •• com line CTS* 
PA3 •• com line DSR* 
PAl •. SEL centronics control 
PAl •. POUT paper out ---+ 
PAO •• BUSY busy ---+ I 

I I 
SP ••• BUSY COIIIDOdore -+ I 
CNT •• POUT COIIIIIOdore ---+ 
PB7 •. MTR* 
PB6 •• SEL3* 
PBS •• SEL2* 
PB4 .. SELl* 
PB3 •. SELO* 
PB2 •. SIDE* 
PBl. .DIR 
PBO •• STEP* 

PC ••• not used 
F •••• INDEX* 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st: drive 
select internal drive 
side select* 
direction 
step* 

disk index* 



Appendix G 

Amiga Auto-configuration Architecture 

This appendix, which appeared in earlier versions of the Amiga Hardware Reference 
Manual, has been deleted. Also, appendix I, which was distributed as errata, should not 
be used. 

For the latest information about the interface to the Amiga microprocessor bus, please 
contact the Technical Support Manager at Commodore Business Machines or 
Commodore-Amiga. 

G -1 



Appendix H 

Keyboard 

This appendix contains a description of the Amiga keyboard interface and the hardware 
of the Amiga keyboard. 

H -1 



KEYBOARD INTERFACE 

The keyboard plugs into the computer via a four-conductor cable similar 
to a telephone handset coily cord (in fact, a telephone handset cable 
may be substituted in a pinch). The four wires provide 5-volt power, 
ground, and two signals called KCLK (keyboard clock) and KDAT (keyboard 
data). KCLK is unidirectional and always driven by the keyboard; 
KDAT is driven by both the keyboard and the collputer. Both signals 
are open-collector; there are pullup resistors in both the keyboard 
(inside the keyboard microprocessor) and the collputer. 

Keyboard communications: 

The keyboard transmits 8-bit data words serially to the 
main unit. Before the transmission starts, both KCLK and KDAT 
are high. The keyboard starts the transmission by putting out 
the first data bit (on KDAT), followed by a pulse on KCLK (low 
then high); then it puts out the second data bit and pulses 
KCLK until all eight data bits have been sent. After the 
end of the last KCLK pulse, the keyboard pulls KDAT high again. 

When the cOllputer has received the eighth bit, it must pulse 
KDAT low for at least 75 microseconds, as a handshake signal 
to the keyboard. 

All codes transmitted to the collputer are rotated one bit before 
transmission. The transmitted order is therefore 6-5-4-3-2-1-0-7. 
The reason for this is to transmit the up/down flag last, in 
order to cause a key-up code to be transmitted in case the keyboard 
is forced to restore lost sync (explained in more detail below) • 

The KDAT line is active low; that is, a high level (+5V) is 
interpreted as 0, and a low level (OV) is interpreted as 1. 

KCLK --V-V-V-V-V-V-V-V 

KDAT 
(6) (5) 

First 
sent 

(4) (3) (2) (1) (0) (7) 

Last 
sent 

The keyboard processor sets the KDAT line about 20 microseconds 
before it pulls KCLK low. KCLK stays low for about 20 microseconds, 
then goes high again. The processor waits another 20 microseconds 
before changing KDAT. 

Therefore, the bit rate during transmission is about 60 microseconds 
per bit, or 17 kbits/sec. 

Keycodes: 

Each key has a keycode associated with it (see accollpanying 
table). Keycodes are always 7 bits long. The eighth bit is a 
"key-up"/"key-down" flag; a 0 (high level) means that the key 
was pushed down, and a 1 (low level) means the key was released 
(the CAPS LOCK key is different -- see below) • 

For exanple, here is a diagram of the "B" key being pushed down. 
The keycode for "B" is 35H = 00110101; due to the rotation of 
the byte, the bits transmitted are 01101010. 

KCLK --V-V-V-V-V-V-V-V 

KDAT , ,--\...--..1--'--1 
011 0 1 0 1 0 

In the next exanple, the "B" key is released. The keycode 
is still 35H, except that bit 7 is set to indicate "key-up," 
resulting in a code of BSH = 10110101. After rotating, the 
transmission will be 01101011: 

KCLK --V-V-V-V V-V-V-V 

KDAT , '--\...--..1--, , 
011 0 1 011 

CAPS LOCK key: 

This key is different from all the others in that it 
generates a keycode only when it is pushed down, never when it 
is released. However, the up/down bit is still used. When 
pushing the CAPS LOCK key turns on the CAPS LOCK LED, the 
up/down bit will be 0; when pushing CAPS LOCK shuts off the LED, 
the up/down bit will be 1. 

"Out-of sync" condition: 

Noise or other glitches may cause the keyboard to get out of sync 
with the conputer. This means that the keyboard is finished 
transmitting a code, but the computer is somewhere in the middle 
of receiving it. 

If this happens, the keyboard will not receive its handshake 
pulse at the end of its transmission. If the handshake pulse 
does not arrive within 143 ms of the last clock of the 
transmission, the keyboard will assume that the computer 
is still waiting for the rest of the transmission and is 
therefore out of sync. The keyboard will then attenpt to 
restore sync by going into "resync mode." In this mode, the 
keyboard clocks out a 1 and waits for a handshake pulse. 
If none arrives within 143 ms, it clocks out another 1 and 
waits again. This process will continue until a handshake 
pulse arrives. 
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Once sync is restored, the keyboard will have clocked a garbage 
character into the CODputer. That is why the key-up/key-down 
flag is always transmitted last. Since the keyboard clocks out 
l's to restore sync, the garbage character thus transmitted will 
appear as a key release, which is less dangerous than a key hit. 

Whenever the keyboard detects that it has lost sync, it will 
assume that the CODputer failed to receive the keycode that 
it had been trying to transmit. Since the CODputer is unable 
to detect lost sync, it is the keyboard's responsibility to 
inform the conputer of the disaster. It does this by transmit
ting a "lost sync" code (value F9H = 11111001) to the CODputer. 
Then it retransmits the code that had been garbled. 

Note: the only reason to transmit the "lost sync" code to the 
conputer is to alert the software that something may be screwed 
up. 'llle "lost sync" code does not help the recovery process, 
because the garbage keycode can't be deleted, and the correct 
key code could sinply be retransmitted without telling the 
conputer that there was an error in the previous one. 

Power-up sequence: 

There are two possible ways for the keyboard to be powered up 
under normal circumstances: the conputer can be turned on 
with the keyboard plugged in, or the keyboard can be plugged 
into an already "on" conputer. 'llle keyboard and conputer 
III\lSt handle either case without causing any upset. 

'llle first thing the keyboard does on power-up is to perform 
a self-test. This involves a ROM checksum test, sinple RAM 
test, and watchdog timer test. Whenever the keyboard is 
powered up (or restarted -- see below), it must not transmit 
anything until it has achieved synchronization with the CODputer. 
'llle way it does this is by slowly clocking out 1 bits, as 
described above, until it receives a handshake pulse. 

If the keyboard is plugged in before power-up, the keyboard 
may continue this process for several minutes as the CODputer 
struggles to boot up and get running. 'llle keyboard IlJJ.St 
continue clocking out Is for however long is necessary, 
until it receives its handshake. 

If the keyboard is plugged in after power-up, no more than 
eight clocks will be needed to achieve sync. In this case, 
however, the CODputer may be in any state imaginable but 
must not be adversely affected by the garbage character it 
will receive. Again, because it receives a key release, 
the damage should be minimal. The keyboard driver III\lSt 
anticipate this happening and handle it, as should any 
application that uses raw keycodes. 

Note: the keyboard I1lIlSt not transmit a "lost sync" code after 
resyncing due to a power-up or restart; only after resyncing 
due to a handshake time-out. 

Once the keyboard and CODputer are in sync, the keyboard III\lSt 
inform the conputer of the results of the self-test. If the 
self-test failed for any reason, a "self test failed" code 
(value FCH = 11111100) is transmitted (the keyboard does not 
wait for a handshake pulse after sending the "self test failed" 
code). After this, the keyboard processor goes into a loop in 
which it blinks the CAPS LOCK LED to inform the user of the 
failure. 'llle blinks are coded as bursts of one, two, three, 
or four blinks, approximately one burst per second. One 
blink = ROM checksum failure; two blinks = RAM test failed; 
three blinks = watchdog timer test failed; four blinks = a 
short exists between two row lines or one of the seven 
special keys (this last test isn't inplemented yet) . 

If the self-test succeeds, then the keyboard will proceed to 
transmit any keys that are currently down. First, it sends 
an "initiate powerup key stream" code (value FDH = 11111101), 
followed by the key codes of all depressed keys (with 
keyup/down set to "down" for each key). After all keys are 
sent (usually there won't be any at all), a "terminate key 
stream" code (value FEH = 11111110) is sent. Finally, the 
CAPS LOCK LED is shut off. This marks the end of the 
start-up sequence, and normal processing c:omnences. 

Note: These special codes, (that is, FCH et al) are a-bit 
numbers; there is no up/down flag associated with them. 
However, the transmission bit order is the same as previously 
described. 

'llle usual sequence of events will therefore be: power up; 
synchronize; transmit "initiate powerup key stream" (FDH); 
transmit "terminate key stream" (FEH). 

Hard Reset 

'llle keyboard has the additional task of resetting the ~nputer 
on the conmand of the user. The user initiates hard reset by 
simultaneously pressing the CTRL key and the two "JlMlGA." keys. 
'llle keyboard responds to this input by pulling KCLK low and 
starting a SOO-ms timer. At the end of the 500 ms, the 
processor checks the three keys to see if they are still down, 
and if so, restarts the SOO-ms timer. This continues until one 
or more of the three keys is released . 

When one or more keys is released, then the processor will wait 
until the end of the 500 ms. Then it junps to its start-up 
code, which releases KCLK and restarts the keyboard. 

Special Codes 

'llle special codes that the keyboard uses to conmunicate with 
the main unit are summarized here. 



Code 

F9 

FA 
FB 
FC 
FD 
FE 
FF 

Name Meaning 

Last key code bad, next code is the same code 
retransmitted (used when keyboard and main unit 
get out of sync) • 

Keyboard output buffer overflow 
Unused 
Keyboard self test failed 
Initiate power-up key stream 
Terminate key stream 
Unused 

KEYBOARD HARDWARE 

This is a description of the hardware insides of the Amiga keyboard. 

This description is valid only for the second revision of the keyboard, 
the version with the watchdog ti¢er. 

PROCESSOR 

The processor is a Rockwell/NCR/MOS Technologies 6500/1. It contains 2K 
bytes of ROM, 64 bytes of RAM, and 4 I/O ports of 8 bits each. It also 
has a 16-bit timer and edge detect capability on two of the I/O lines 
(port A bits 0 and 1). It has a built-in crystal oscillator, running 
at 3.00 megahertz, which is divided internally to a 1 5 MHz internal clock. 

RESET CIRCUITRY 

There is a circuit for resetting the processor on power-on. The reset 
pulse lasts about 1 second after power is applied. The circuit also 
performs a "watchdog" function: once the processor starts scanning the 
key matrix, the watchdog timer is armed and will reset the processor if 
the scanning stops for more than about 50 milliseconds. The column 15 line 
is the trigger for the watchdog timer. 

KEY MATRIX 

1here are 91 keys on the keyboard. 84 of them are arranged in a matrix 
of 6 rows and 15 columns (leaving six holes in the matrix). Each row is 
an input and has a pullup resistor to vee on it (R=3 . 3K to 11K). Each 
column is an open-collector output with no pullup, Le., it can drive 
a column line low, but not high. The program will drive columns one 
at a time and read rows. 

The other seven keys are special shift keys as follows: CTRL, left SHIFT, 
right SHIFT, left ALT, right ALT, left AMIGA., right AMIGA.. Each of these 
keys has a dedicated input on the microprocessor. The actual port and bit 
numbers of all the keys are described below. 

PORTS 

As mentioned, there are four I/O ports of 8 bits each. 1he following 
table describes each port and the meaning of each bit: 

PORT A -- 6500/1 address 080 hex 
PA.O In/Out KDAT output/positive edge detect input (*) 
PA.l Out KCLK output (*) 
PA.2 In Row 0 input (low = switch closed). 
PA.3 In Row 1 input 
PA.4 In Row 2 input 
PA.5 In Row 3 input 
PA.6 In Row 4 input 
PA.7 In Row 5 input 

(*) These two bits are swapped from the previous code, to take 
advantage of the positive edge-detect capability of the 

·PA.O pin (it is easier to detect a handshake this way) • 

PORT B -- 6500/1 address 081 hex 
PB.O In Right SHIFT key input (low = switch closed) • 
PB.l In Right ALT key input 
PB . 2 In Right AMIGA. key input 
PB.3 In CTRL key input 
PB.4 In Left SHIFT key input 
PB.5 In Left ALT key input 
PB.6 In Left AMIGA. key input 
PB.7 Out CAPS LOCK LED control (high = LED on) • 

PORT C -- 6500/1 address 082 hex 
PC.O Out Column 0 output (active low) 
PC.l Out Column 1 output 
PC.2 Out Column 2 output 
PC.3 Out Column 3 output 
PC.4 Out Column 4 output 
PC.5 Out Column 5 output 
PC.6 Out Column 6 output 
PC.7 Out Column 7 output 

PORT D -- 6500/1 address 083 hex 
PD.O Out Column 8 output 
PD.l Out Column 9 output 
PD.2 Out Column 10 output 
PD.3 Out Column 11 output 
PD.4 Out Column 12 output 
PD.5 Out Column 13 output 
PD.6 Out Column 14 output 
PD.7 Out Column 15 output (*) 

(*) This keyboard has only 15 columns, nwnbered 0 to 14. However, 
the microprocessor software supports 16 columns, so we can use 
it in a future keyboard. 
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COUNTER PIN (input or output) 

On the watc:hdog timer board, the counter pin is cormected to the 
column 15 output. On the older non-watc:hdog version, the counter pin 
is uncormected. nus provides the keyboard processor the ability to 
determine whic:h type of board it it is installed in, so the new 
processor can work in old boards (with minor c:hanges to the board) • 

NMI INPUT 

nus is cormected to vee and will therefore never turn on. 

MATRIX TABLE 

The following table shows whic:h keys are readable in port A for eac:h 
column you drive. The key code for eac:h key is also included (in hex) • 

Column 

15 
(pD. 7) 

14 
(pD. 6) 

13 
(pD. 5) 

12 
(pD. 4) 

11 
(pD. 3) 

10 
(po. 2) 

9 
(po. 1) 

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
(Bit 7) (Bit 6) (Bit 5) (Bit 4) lBit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
I (spare) I (spare) I (spare) I (spare) I (spare) I (spare) I 
I I I I I I I 
I (OE) I (lC) I (2C) I (47) I (48) I (49) I 
+-------+-------+-------+-------+-------+-------+ 
I (spare) I (LEFT I CAPS I TAB I I ESC I 
I I SHIFT) I LOCK I I I I 
I (5D) I (30) I (62) I (42) I (00) I (45) I 
+-------+-------+-------+-------+-------+-------+ 
I (spare) I Z I A I Q I I (spare) I 
I I I I I 1 I I 
I (5E) I (31) I (20) I (10) I (01) I (SA) I 
+-------+-------+-------+-------+-------+-------+ 
19IXISIWI@IFlI 
I (N.P.) I I I I 2 I I 
I (3F) I (32) I (21) I (11) I (02) I (50) I 
+-------+-------+-------+-------+-------+-------+ 
I 6 I C I DIE I # I F2 I 
I(N.P.) I I I I 3 I I 
I (2F) I (33) I (22) I (12) I (03) I (51) I 
+-------+-------+-------+-------+-------+-------+ 
I 3 I V IF, R , $ ,F3 I 
I (N.P.) I I I I 4 I I 
I (IF) I (34) I (23) I (13) I (04) I (52) I 
+-------+-------+-------+-------+-------+-------+ 
I· I BIG I T I % I F4 I 
I (N.P.) I I I I 5 I I 
I (3C) I (35) I (24) ,(14) I (05) I (53) I 
+-------+-------+-------+-------+-------+-------+ 

Column 

8 
(pD. 0) 

7 
(pc. 7) 

6 
(pc. 6) 

5 
(pc. 5) 

4 
(pc.4) 

3 
(pc. 3) 

2 
(pc. 2) 

1 
(pc. 1) 

o 
(pc. 0) 

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
(Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
I 8 NIH Y I A I F5 I 
I (N.P.) I I I I 6 I I 
I (3E) I (36) ,(25) I (15) I (06) I (54) I 
+-------+-------+-------+-------+~------+-------+ 
I 5 I M I J I U I & I (spare) , 
I (N.P.) I I I I 7 I I 
I (2E) I (37) I (26) I (16) I (07) I (5B) I 
+-------+-------+-------+-------+-------+-------+ 
I 2 I < I K r I I * I F6 I 
I (N.P.) I ,I I I 8 I I 
I (lE) I (38) I (27) I (17) I (08) I (55) I 
+-------+-------+-------+-------+-------+-------+ 
I ENTER I > L I 0 I ( I (spare) I 
I (N.P.) I· I I 9 I I 
I (43) I (39) I (28) I (18) I (09) I (SC) I 
+-------+-------+-------+-------+-------+-------+ 
I 7 I? I PI) I F7 I 
I(N.P.) I / I ; I I 0 I I 
I (3D) I (JA) I (29) I (19) I (OA) I (56) I 
+-------+-------+-------+-------+-------+-------+ 
I 4 I (spare) I " I {I I F8 I 
I (N.P.) I I I [I I I 
I (2D) I (3B) I (2A) I (lA) I (OB) I (57) I 
+-------+-------+-------+-------+-------+-------+ 
I 1 I SPACE I (RET) I } I + I F9 I 
I (N.P.) I BAR I I] I = I I 
I (10) I (40) I (2B) I (lB) I (OC) I (58) I 
+-------+-------+-------+-------+-------+-------+ 
I 0 I JWlC I DEL I RET I I I FlO I 
I (N.P.) I SPACE I I I \ I I 
I (OF) ,(41) I (46) I (44) I (OD) I (59) , 
+-------+-------+-------+-------+-------+-------+ 
I - I CURS I CURS I CURS I CURS I HELP I 
I (N.P.) I [)()oIN ,RIGHT I LEFT I UP I I 
I (4A) '(40) I (4E) '(4F) '(4C) I (SF) I 
+-------+-------+-------+-------+-------+-------+ 

The following table shows whic:h keys are readable in port B 
(shift keys) • 

(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0) 
+-------+-------+-------+-------+-------+-------+-------+ 
,LEFT ,LEFT ,LEFT ,cnu. ,RIGHT I RIGHT , RIGHT , 
, AMIGA ,AtT I SHIFT , , AMIGA I AtT I SHIFT I 
I (66) '(64) I (60) '(63) I (67) '(65) ,(61) I 
+-------+-------+-------+-------+-------+-------+-------+ 



Aliasing distortion 

Alt keys 

Amiga keys 

AmigaDOS 

Amplitude 

Amplitude modulation 

Attach mode 

Automatic mode 

Barrel shifter 

Baud rate 

Beam counters 

Bit-map 

Glossary 

A side effect of sound sampling, where two additional fre
quencies are produced, distorting the sound output. 

Two keys on the keyboard to the left and right of the 
Amiga keys. 

Two keys on the keyboard to the left and right of the space 
bar. 

The Amiga operating system. 

The voltage or current output expressed as volume from a 
sound speaker. 

A means of increasing audio effects by using one audio chan
nel to alter the amplitude of another. 

In sprites, a mode in which a sprite uses two DMA channels 
for additional colors. In sound production, combining two 
audio channels for frequency/amplitude modulation or for 
stereo sound. 

In sprite display, the normal mode in which the sprite DMA 
channel, once it starts up, automatically retrieves and 
displays all of the data for a sprite. In audio, the normal 
mode in which the system retrieves sound data automati
cally through DMA. 

Blitter circuit that allows movement of Images on pixel 
boundaries. 

Rate of data transmission through a serial port. 

Registers that keep track of the position of the video beam. 

The complete definition of a display in memory, consisting 
of one 01 more bit-planes and information about how to 
organize the rectangular display. 

Glossary--J 



Bit-plane 

Bit-plane animation 

Blanking interval 

Blitter 

Clear 

CLI 

Clipping 

Collision 

Color descriptor words 

Color indirection 

Color palette 

Color register 

Color table 

Command line interface 

Composite video 

Controller 

Coordinates 

Glossary-2 

A contiguous series of display memory words, treated as if it 
were a rectangular shape. 

A means of animating the display by moving around blocks 
of playfield data with the blitter. 

Time period when the video beam is outside the display 
area. 

DMA channel used for data copying and line drawing. 

Giving a bit the value of O. 

See command line interface. 

When a portion of a sprite is outside the display window 
and thus is not visible. 

A means of detecting when sprites, playfields, or playfield 
objects attempt to overlap in the same pixel position or 
attempt to cross some pre-defined boundary. 

Pairs of words that define each line of a sprite. 

The method used by Amiga for coloring individual pixels in 
which the binary number formed from all the bits that 
define a given pixel refers to one of the 32 co~or registers. 

See Color table. 

One of 32 hardware registers containing colors that you can 
define. 

The set of 32 color registers. 

The command line interface to system commands and 
utilities. 

A video signal, transmitted over a single coaxial cable, which 
includes both picture and sync information. 

Hardware device, such as mouse or light pen, used to move 
the pointer or furnish some other input to the system. 

A pair of numbers shown in the form (x,y), where x is an 
offset from the left side of the display or display window 
and y is an offset from the top. 



Copper 

CoprocessoI 

Cursor keys 

Data fetch 

Delay 

Depth 

Display-synchronized coprocessor that resides on one of the 
Amiga custom chips and directs the graphics display. 

Processor that adds its instruction set to that of the main 
processor. 

Keys for moving something on the screen. 

The number of words fetched for each line of the display. 

In playfield horizontal scrolling, specifies how many pixels 
the picture will shift for each display field. Delay controls 
the speed of scrolling. 

Number of bit-planes in a display. 

Digital-to-analog converter A device that converts a binary quantity to an analog level. 

Direct memory access 

Display field 

Display mode 

Display time 

Display window 

DMA 

Dual-playfield mode 

Equal-tempered scale 

Exec 

An arrangement whereby intelligent devices can read or 
write memory directly, without having to interrupt the 
processor. 

OJ,le complete scanning of the video beam from top to bot
tom of the video display screen. 

One of the basic types of display; for example, high or low 
resolution, interlaced or non-interlaced, single or dual 
playfield. 

The amount of time to produce one display field, approxi
mately 1/60th of a second. 

The portion of the bit-map selected for display. Also, the 
actual size of the on-screen display. 

See direct memory access. 

A display mode that allows you to manage two separate 
display memories, giving you two separately controllable 
displays at the same time. 

A musical scale where each note is the 12th root of 2 above 
the note below it. 

Low-level primitives that support the AmigaDOS operating 
system. 
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Font 

Frequency 

Frequency modulation 

Genlock 

High resolution 

Hold-and-modify 

Interlaced mode 

Joystick 

Light pen 

Low resolution 

Manual mode 

Minterm 

Modulo 

Glossary-4 

A set of letters, numbers, and symbols sharing the same size 
and design. 

The number of times per second a waveform repeats. 

A means of changing sound quality by using one audio 
channel to affect the period of the waveform produced by 
another channel. Frequency modulation mcreases or 
decreases the pitch of the sound. 

An optional feature that allows you to bring in a graphics 
display from an external video source. 

A horizontal display mode in which 640 pixels are displayed 
across a horizontal line in a normal-sized display. 

A display mode that gives you extended color selection-up 
to 4,096 colors on the screen at one time. 

A vertical display mode where 400 lines are displayed from 
top to bottom of the video display in a normal-size display. 

A controller device that freely rotates and swings from left 
to right, pivoting from the bottom of the shaft; used to posi
tion something on the screen. 

A controller device consisting of a stylus and tablet used for 
drawing something on the screen. 

A horizontal display mode in which 320 pixels are displayed 
across a horizontal line in a normal-sized display. 

Non-DMA output. In sprite display, a mode in which each 
line of a sprite is written in a separate operation. In audio 
output, a mode in which audio data words are written one 
at a time to the output. 

One of eight possible logical combinations of data bits from 
three different data sources. 

A number defining which data in memory belongs on each 
horizontal line of the display. Refers to the number of bytes 
in memory between the last word on one horizontal line and 
the beginning of the first word on the 'next line. 



Mouse 

Multitasking 

Non-interlaced mode 

NTSC 

Overscan 

Paddle controller 

PAL 

Parallel port 

Pitch 

Pixel 

Play field 

Play field object 

Play field animation 

Pointer register 

Polarity 

Poten tiometer 

Primitives 

A controller device that can be rolled around to move some
thing on the screen; also has buttons to give other forms of 
input. 

A system in which many tasks can be operating at the same 
time, with no task forced to be aware of any other task. 

A display mode in which 200 lines are displayed from top to 
bottom of the video display in a normal-sized display. 

National Television Standards Committee specification for 
composite video. 

Area scanned by the video beam but not visible on the video 
display screen. 

A game controller that uses a potentiometer (variable resis
tor) to position objects on the screen. 

A European television standard similar to (but incompatible 
with) NTSC. Stands for "Phase Alternate Line." 

A connector on the back of the Amiga that is used to attach 
parallel printers and other parallel add-ons. 

The quality of a sound expressed as its highness or lowness. 

One of the small elements that makes up the video display. 
The smallest addressable element in the video display. 

One of the basic elements in Amiga graphics; the back
ground for all the other display elements. 

Subsection of a playfield that is used in playfield animation. 

See bit-plane animation. 

Register that is continuously incremented to point to a 
series of memory locations. 

True or false state of a bit. 

An electrical analog device used to adjust some variable 
value. 

Amiga graphics, text, and animation library functions. 
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QUantization noise 

RAM 

Raster 

Read-only 

Resolution 

ROM 

Sample 

Sampling rate 

Sampling period 

Scrolling 

Serial port 

Set 

Shared memory 

Sprite 

Strobe address 

Task 

Glossary-6 

Audio noise introduced by round-off errors when vou are 
trying to reproduce a signal by approximation. 

Random access (volatile) memory. 

The area in memory that completely defines a bit-map 
display. 

Describes a register or memory area that can be read but 
not written. 

On a video display, the number of pixels that can be 
displayed in the horizontal and vertical directions. 

See read-only memory. 

One of the segments of the time axis of a waveform. 

The number of samples played per second. 

The value that determines how many clock cycles it takes to 
play one data sample. 

Moving a playfield smoothly in a vertical or horizon tal 
direction. 

A connector on the back of the Amiga used to attach 
modems and other serial add-ons. 

Giving a bit the value of 1. 

The RAM used in the Amiga for both display memory and 
executing programs. 

Easily movable graphics object that is produced by one of 
the eight sprite DMA channels and is independent of the 
playfield display. 

An address you put out to the bus in order to cause some 
other action to take place; the actual data written or read is 
ignored. 

Operating system module or application program. Each 
task appears to have full control over its own virtual 68000 
machine. 



Timbre 

Trackball 

Transparen t 

UART 

Video priority 

Video display 

Write-only 

.. 

Tone quality of a sound. 

A controller device that you spin with your hand to move 
something on the screen; may have buttons for other forms 
of input. 

A special color register definition that allows a background 
color to show through. Used in dual-playfield mode. 

The circuit that controls the serial link to peripheral devices, 
short for Universal Asynchronous Receiver/Transmitter. 

Defines which objects (playfields and sprites) are shown in 
the foreground and which objects are shown in the back
ground. Higher-priority objects appear in front of lower
priority objects. 

Everything that appears on the screen of a video monitor or 
television. 

Describes a register that can be written to but cannot be 
read. 
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Index 

68000 
bus sharing, 189 
instead of Copper, 24 
interrupting, 24, 207 
normal cycle, 189 
synchronizing with the video beam, 

205 
with special-purpose chips, 4 

ADKCON 
in audio, 149, 151 
in disk control, 233-4 

Aliasing 
audio, 154 

Animation, 172 
Area fill, 180-3 
Attachment 

audio, 150 
sprites, 116 

Audio 
aliasing distortion, 154-7 
channels 

attaching, 149, 161 
choosing, 136 

data, 137-8 
data length registers, 139 
data location registers, 137, 138 
data output rate, 140-43 
decibel values, 140, 160 
D~, 137, 143, 147, 161 
equal-tempered scale, 158-9 
interrupts, 147, 210 
joining tones, 147-8 
low-pass filter, 155-7 
modulation 

amplitude, 149 
frequency, 149, 150 , 161 

noise reduction, 154 
non-D~ output, 157 
output jacks, 245 
period, 140-43 
period register, 143 
playing multiple tones, 149 
producing a steady tone, 145-6 
RF,245 
sampling period, 141 
sampling rate, 141, 152, 156, 161 
state machine, 161-4 
stopping, 144 
system overhead, 153 
volume, 139-40, 160 
volume registers, 139 
waveform transitions, 152 

AUDxLCH, 137 
AUDxLCL, 137 
AUDxLEN, 139 
AUDxPER, 143 
AUDxVOL, 139 
Background color, 35 
Barrel shifter, 177 
Beam comparator, 121 
Beam position 

comparison enable bits, 13 
detection of, 205-6 
in Copper use, 20 
registers, 206 
vertical, 12 

Beam position counter, 205 
Bit-planes 

coloring, 44-6 
D~,52 

in dual-playfield mode, 60 
setting the number of, 37 



setting the poiri ters, 43 
Blitter 

address scanning, 171 
addressing, 170 
animation, 172 
area filling 

exclusive, 182-3 
inclusive, 180-2 

blitter-finished disable bit (BFD), 23 
blitter-nasty bit, 191 
block transfers, 177 
common equations, 174 
complete example, 193 
copying, 167-8 
DMA priority, 186 
DMA time slots, 186 
equation-to-minterm conversion, 175 
interrupts, 211 
LF control byte, 171-7 
line drawing 

octants, 184 
registers, 184 

line drawing mode, 183-5 
logic equations, 172-5 
logic operations, 171-7 
masking, 178-9 
minterms, 173-6 
modulo, 168-70 
modulo registers, 169 
pointer registers, 168 
sequence of bus cycles, 192 
shifting, 177 
Venn diagrams, 175-7 
with the Copper, 23 
zero detection, 179 

Blitter registers 
in line-drawing mode, 183-4 

BLTCONO 
in line drawing, 183 
in logic operations, 171 
in shift control, 178 
in zero detection, 179 

BLTCONI 
in area fill, 181, 182 

Index-2 

in blitter addressing, 170 
in line drawing, 183, 185 
in shift control, 178 

BL TSIZE, 171 
BLTxMOD, 169 
BLTxPTH,168 
BLTxPTL, 168 
BPL1MOD,51 
BPL2MOD,51 
BPLCONO 

enabling color, 52 
in dual-playfield mode, 64 
in hold-and-modify mode, 80 
in interlacing, 40 
in resolution mode, 38 
selecting bit-planes, 37 
setting bits, 37 
with light pen, 225 

BPLCON1 
setting scrolling delay, 78 

BPLCON2 
in dual-playfield priority, 64 , 200 

BPLxPTH, 43, 50, 67 
BPLxPTL, 43, 50, 67 
CLXCON,203 
CLXDAT,203 
Collision 

control register, 203-4 
detection register, 202-3 
sprites-play fields, 202-4 

Color 
attached sprites, 118 
background color, 35 
color indirection, 31 
color table, 35 
enabling, 52 
in dual-playfield mode, 62 
in hold-and-modify mode, 79 
playfields, 31-3, 34-7, 44-5, 62-63, 86-90 
sample register contents, 86 
sprites, 96-8 

Color registers 
con ten ts, 36 
loading, 36 



names of registers, 35 
sprites, 127-9 

Color selection 
in high-resolution mode,. 90 
in hold-and-modify mode, 89 
in low-resolution mode, 88 

COLORx,35 
Comparator, 121 
Con troller port 

joystick, 217 
mouse, 217 
trackball, 217 

Con trollers 
joystick, 220 
light pen, 224-6 
mouse, 217-9 
potentiometers, 224 
proportional 

joystick, 220-3 
paddle, 220-3 
registers, 223 

special, 226-7 
types, 6 
typical connections, 222 

COP1LCH,13 
COP1LCL,13 
COP2LCH,13 
COP2LCL,13 
COPCON,15 
COPJMP1, 14 
COPJMP2,14 
Copper 

affecting registers, 14 
bus cycles used, 9 
comparison enable, 21 
control register, 14 
danger bit (CDANG), 15 
features, 8 
horizontal beam position, 12 
in interlaced mode, 22 
in memory operations, 9 
in vertical blanking interrupts, 210 
instruction lists, 15, 17 
instriI ctions 

description, 9 
MOVE, 9 
ordering, 16 
SKIP, 20-1 
summary, 25 
WAIT, 11, 19, 21 

interrupt, 210 
interrupting the 68000, 24 
jump strobe addresses, 14 
location registers, 13, 19, 21 
loops and branches, 21 
MOVE instruction, 9 
SKIP instruction, 20-1 
starting, 14, 19 
stopping, 19 
vertical beam position, 12 
WAIT instruction, 11, 19, 21 
with the blitter, 23 

Coprocessor 
(see Copper), 7 

Copying data, 167-8 
Data-fetch 

high-resolution, 51 
in basic playfield, 49-51 
in horizon tal scrolling, 76 

Data-fetch start 
normal, 49 

Data-fetch stop 
normal, 49 

DDFSTOP, 49, 72, 76 
DDFSTRT, 49, 72, 76 
Decibel values, 160 
Disk 

8520 ports, 228 
control, 228-9 
control register, 233 
controller, 5, 227-235 
data buffer, 232 
data pointer registers, 230 
data transfer, 230 
DMA,230 
DMA buffer, 235 
drives, 5 
input stream synchronization register, 

Index-3 



235 
interrupts, 211, 235 
selection, 228-9 
sensing, 228-9 
write, 230 

Display 
size of, 46 

Display field, 29 
Display memory, 46 
Display modes, 30 
Display output connector, 246 
Display window 

positioning, 46 
SIze 

maximum, 72 
normal, 47 

starting position 
horizontal, 47, 70 
vertical, 47, 70 

stopping position 
horizontal, 48, 71 
vertical, 48, 72 

DIWSTOP, 48, 71 
DIWSTRT, 47, 69 
DMA 

audio, 143, 161 
bit-planes, 52 
blitter, 186-92 
control, 212-3 
control register, 212 
disk, 230-3 
playfield, 52 
sprites, 105, 123 

DMACON 
BLTPRI bit, 191 
in audio, 143 
in blitter logic operations, 179 
in playfields, 52 
stopping the Copper, 20 , 212 

DMACONR, 212 
DSKBLK, 235 
DSKBYTR, 232 
DSKDAT, 235 
DSKLEN, 230 

DSKPTH, 230 
DSKPTL, 230 
DSKSYNC, 235 
Dual playfields 

bit-plane assignment, 60 
description, 58 
enabling, 64 
high-resolution colors, 63 
in high-resolution mode, 63 
low-resolution colors, 62 
priority, 64 
scrolling, 64 

Dual-playfield mode, 33 
External interrupts, 209 
Field time, 29 
Genlock 

effect on background color, 36 
in playfields, 82 

High resolution 
color selection, 38, 90 
memory requirements, 42 
with dual playfields, 63 

Hold-and-modify mode, 79 
Horizontal blanking interval, 12 
INTENA, 208 
INTENAR, 208 
Interlaced mode 

Copper in, 22 
memory requirements, 42 
modulo, 51 
setting interlaced mode, 39 

Interrupts 
audio, 210 
blitter, 211 
con trol registers, 208-11 
Copper, 210 
disk, 211, 235 
during vertical blanking, 210 
external, 209 
interrupt enable bit, 209 
interrupt lines, 207 
maskable, 207 
nonmaskable, 207 
serial port, 211 



setting and clearing bits, 209 
INTREQ, 24, 208 
INTREQR, 208 
JOYODAT 

with joystick, 220 
with mouse/trackball, 218 

JOY1DAT 
with joystick, 220 
with mouse/trackball, 218 

Joystick 
proportional, 221 
reading, 220 

Keyboard 
8520, 236 
clock, 236 
ghosting, 239 
keycodes, 236-7 
reading, 236-9 

Light pen 
controller port, 224-6 
registers, 225 

Line drawing, 183 
Low resolution 

color selection, 88 
Manual mode 

in sprites, 119 
Memory 

adding, 6 
primary and secondary, 5 

Memory allocation 
audio, 137 
formula for playfields, 69 
playfields, 42 
sprite data, 100 

Minterms, 173-6 
Modulation 

amplitude, 149 
frequency, 150 

Modulo 
blitter, 168-70 
in basic playfield, 50 
in horizontal scrolling, 76 
in interlaced mode, 51 

Monitors, 246 

Mouse 
buttons, 219 
counter, 218-9 
port, 218 
reading, 218-9 

Noise 
audio, 154 

Overscan, 46 
Paddle controller, 220 
Parallel port, 240 
Peripherals, 5, 6 
Pixels 

definition, 29 
in sprites, 95 

Playfields 
allocating memory, 41 
bit-plane pointers, 43 
collision, 202-4 
color of pixels, 31-3 
color register contents, 86 
color table, 35 
coloring the bit-planes, 34, 44-6 
colors in a single playfield, 35 
data fetch, 49-51, 72 
defining a scrolled playfield, 78 
defining display window, 46-8 
defining dual playfields, 65 
defining the basic playfield, 53-5 
display window size 

maximum, 72 
normal, 47 

displaying, 52 
dual-playfield mode, 58 
enabling DMA, 52 
forming, 33 
high-resolution 

color selection, 90 
example, 56 
mode, 30 

hold-and-modify, 89 
hold-and-modify mode, 79-82 
interlaced example, 56 
low-resolu tion 

colors, 88 
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mode, 30 
memory required, 41, 69 
modulo registers, 51 
multiple-playfield display, 82 
normal, 30 
poin ter registers, 57, 67 
priority, 200 
register summary, 83-5 
scrolling 

horizon tal, 74-8 
vertical, 73-4 

selecting bit-planes, 37 
setting resolution mode, 38 
specifying modulo, 50-2, 66-8 
specifying the data fetch, 67 
with external video source, 82 
with genlock, 82 
with larger display memory, 66-8 

Playfield-sprite priority, 200 
Ports 

controller, 216 
disk, 228 
parallel, 240 
serial, 240-5 

POTODAT, 223 
POT1DAT, 223 
POTGO, 222, 226-7 
POTGOR, 226-7 
Priority 

dual playfields, 64 
playfield-sprite, 200 
priority control register, 200 
sprites, 198 

Proportional con trollers 
reading, 222 

Resolution 
setting, 38 

Sampling 
period, 141 
rate, 152 

Scrolling 
data fetch, 76 
delay, 78 
horizon tal, 74-8 

Index-6 

in dual-playfield mode, 64 
in high-resolution mode, 75 
modulo, 76 
vertical, 73-4 

SERDATR, 241-3 
Serial port 

baud rate, 240 
output register, 243 
receive-data register, 241 
shift register, 243 

SERPER, 241 
Sound generation, 132-5 
Sprites 

address pointers, 106 
arming and disarming, 120 
attached 

color registers, 129 
colors, 118 
control word, 116 
Copper list, 119 
data words, 117, 119 

clipped, 95 
collision, 109, 202-4 
color, 96-8 
color registers used, 98 
comparator, 121, 123 
control registers, 121, 123, 125-6 
con trol words, 102 
data registers, 123, 126 
data structure, 99-104 
data words, 102 
designing, 98 
displaying 

example, 106-8 
steps in, 104 

DMA, 105, 110 
end-of-data words, 104 
forming, 92 .. 104 
manual mode, 119 
memory requirements, 100 
moving, 108-10 
overlapped, 114 
parallel-to-serial converters, 120 
pixels in sprites, 95 



poin ter registers 
initializing, 105 
resetting, 106 , 124 

position registers, 121, 123 
priorities, 198 
priority, 111, 114, 200 
reuse, 110-13, 111 
screen position 

horizon tal, 92-4, 102 
vertical, 94 

shape, 95 
size, 95 
vertical position, 102 

SPRxCTL, 102, 120-1, 123, 125 
SPRxDAT A, 120, 123 
SPRxDATB, 120, 123 
SPRxPOS, 102, 120-1, 123, 125 
SPRxPTH, 105, 123-4 
SPRxPTL, 105, 123-4 
Text 

packed, 178 
Trackball 

counter, 218 
port, 218 

VHPOSR 
with beam counter, 206 
with light pen, 225 

VHPOSW 
with beam counter, 206 

Video 
beam position, 12 
camera input, 5 
external sourees, 82 
laser disk input, 5 
monitors, 5 
output, 245 
VCR input, 5 

Volume, 139-40 
VPOSR 

in playfields, 57 
with beam counter, 206 
with light pen, 225 

VPOSW 
with beam counter, 206 

Waveforms 
audio, 132 

Index-7 
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The Amiga Computer is an exciting new high-performance microcomputer with 
superb graphics, sound, and multitasking capabilities. Its technologically advanced 
hardware, designed around the Motorola 68000 microprocessor, includes three 
sophisticated custom chips that control graphics, audio, and peripherals. The 
Amiga's unique system software is contained in 192K of read-only memory (ROM), 
providing programmers with unparalleled power, flexibility, and convenience in 
designing and creating programs. 

The AMIGA HARDWARE REFERENCE MANUAL, written by the technical staff at 
Commodore-Amiga, Inc., is an in-depth and thorough description of the Amiga's 
hardware. It is both an introduction to the design of the machine and a reference to 
its architecture. It includes: 

• an introductory tutorial on writing assembly language programs to directly con
trol the Amiga's graphics and hardware 

• descriptions of the Copper (coprocessor), playfields, sprites, and the Blitter, as 
well as audio, system control, and interface hardware 

• eight appendices giving a concise summary of the entire register set and the uses 
of individual bits 

• a glossary of key terms 

For the serious programmer working in assembly language, C, or Pascal who wants 
to take full advantage of the Amiga's impressive capabilities, the AMIGA HARD
WARE REFERENCE MANUAL is an essential reference. 

Written by the technical staff at Commodore-Amiga, Inc., who designed the Amiga's 
hardware and system software, the AMIGA HARDWARE REFERENCE MANUAL 
is the definitive source of information on the internal design and architecture of this 
revolutionary microcomputer. 

The other books in the Amiga Technical Reference Series are: 

Amiga Intuition Reference Manual 
Amiga ROM Kernel Reference Manual: Libraries and Devices 
Amiga ROM Kernel Reference Manual: Exec 

Caver design by Marshall Henrichs 
Caver photograph by Jack Haeger 

Addison-Wesley Publishing Company, Inc. ISBN 0-201-11077-6 


