W@ Hardware
Reference Manual

Commodore Business Machines, Inc.

Amiga Hardware Reference Manual

Commodore Business Machines, Inc.

Amiga Technical Reference Series

A
vy
Addison-Wesley Publishing Company, Inc. »
Reading, Massachusetts Menlo Park, California Don Mills, Ontario

Wokingham, England Amsterdam Sydney Singapore Tokyo
Madrid Bogota Santiago San Juan

Library of Congress Cataloging-in-Publication Data
Main entry under title:

Amiga hardware reference manual.

Includes index. 1. Amiga (Computer) I Commodore Business Machines.
QA76.8.A177A65 1986 004.165 85-26650

ISBN 0-201-11077-6

BCDEFGHIJ~BA-89876

The text of this manual was written by Robert Peck, Susan Deyl, Jay Miner, and Chris Raymond.

Special thanks to Bill Kolb, Dave Needle, Lee Ho, and Dale Luck.

COPYRIGHT © 1986 by Commodore-Amiga, Inc.

This manual is copyrighted and all rights are reserved. This document may not, in whole or in part, be copied, photocopied, repro-
duced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from
Commodore-Amiga, Inc.

DISCLAIMERS

COMMODORE-AMIGA, INC., (“COMMODORE”) MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH
RESPECT TO THE PROGRAMS DESCRIBED HEREIN, THEIR QUALITY, PERFORMANCE, MERCHANTABILITY, OR FIT-
NESS FOR ANY PARTICULAR PURPOSE. THESE PROGRAMS ARE SOLD “AS I1S.” THE ENTIRE RISK AS TO THEIR
QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING
PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE PROGRAMS, COMMODORE, THEIR DISTRIBUTORS OR
THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSARY DAMAGES. IN NO EVENT WILL COMMODORE
BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT
IN THE PROGRAMS EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

THE AMIGA COMPUTER MEETS TITLE 47 OF THE CODE OF FEDERAL REGULATIONS FOR CLASS B COMPUTING
EQUIPMENT. THE FCC STRICTLY FORBIDS THE USE OF UNSHIELDED CABLE TO ANY AMIGA CONNECTORS WITH
THE EXCEPTION OF AC POWER. COMMODORE-AMIGA SHALL NOT BE HELD LIABLE FOR INTERFERENCE GEN-
ERATED BY PERIPHERALS NOT AUTHORIZED IN WRITING BY COMMODORE-AMIGA, INC.

Amiga is a trademark of Commodore-Amiga, Inc.

CBM Product Number 327272-02

Second Printing, July 1986

PREFACE

This manual provides information about the Amigaltm] graphics and audio hardware
and about how the Amiga talks to the outside world through peripheral devices. A por-
tion of this manual is a tutorial on writing assembly language programs to directly con-
trol the Amiga’s graphics and hardware. ’

This book is intended for the following audiences:

o Assembly language programmers who need a more direct way of interacting with

the system than the routines described in the Amiga ROM Kernel Manual. You
can find information here to help you make your programs run faster or do
things that the ROM kernel routines don’t do. ‘

Anyone who wants to add new peripherals to the Amiga or just wants to know
how the hardware works.

We suggest that you use this book according to your level of familiarity with the Amiga,
system. Here are some suggestions:

(o]

If this is your initial exposure to the Amiga, read chapter 1, which gives a sur-
vey of all the hardware features and a brief rundown of graphics and audio
effects created by hardware interaction.

If you are already familiar with the system and want to acquaint yourself with
how the various bits in the hardware registers govern the way the system func-
tions, browse through chapters 2 through 8. Examples are included in these
chapters.

For advanced users, the appendixes give a concise summary of the entire register
set and the uses of the individual bits. Once you are familiar with the effects of
changes in the various bits, you may wish to refer more often to the appendixes
than to the explanatory chapters.

Here is a brief overview of the contents:

Chapter 1, Introduction. An overview of the hardware and survey of the
Amiga’s graphics and audio features. '

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the
entire graphics and audio system; directing mid-screen modifications in graphics
displays and directing register changes during the time between displays.

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields,
one of the basic display elements of the Amiga; how the Amiga produces multi-
color, multi-graphical bit-mapped displays.

Chapter 4, Sprite Hardware. Using the eight sprite direct-memory access (DMA)
channels to make sprite movable objects; creating their data structures, display-

ing and moving them, reusing the DMA channels.

Chapter 5, Audio Hardware. Overview of sampled sound; how to produce qual-
ity sound, simple and complex sounds, and modulated sounds.

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create anima-

_ tion effects and draw lines into playfields.

Chapter 7, System Control Hardware. Using the control registers to define
depth arrangement of graphics objects, detect collisions between graphics
objects, control direct memory access, and control interrupts.

Chapter 8, Interface Hardware. How the Amiga talks to the outside world
through controller ports, keyboard, audio jacks and video connectors, serial and
parallel interfaces; information about the disk controller and RAM expansion
slot.

Appendizes. Alphabetical and address-order listings of all the graphics and
audio system registers and the functions of their bits, system memory map,
descriptions of internal and external connectors, specifications for the peripheral
interface ports, and specifications for the keyboard.

Glossary. After the appendixes, there is a glossary of important terms.

You may wish to look at the following books and manuals for further information about
the Amiga:

o

The Amiga ROM Kernel Manual contains information about the Exec multitask-
ing routines and is the source for all the C language primitives for Amiga graph-
ics, animation, and audio.

The following manuals contain information about the AmigaDOS operating sys-
tem:

o AmigaDOS User’s Manual

o AmigaDOS Developer’s Manual
o AmigaDOS Technical Reference Manual
It is our policy to make certain that the information contained here is accurate, con-

sistent, and up to date. If you should find any material confusing, inaccurate, or incom-
plete, please feel free to contact Amiga with your questions or comments.

-yvii-

Table of Contents

Chapter 1 INTRODUCTION

Components of the Amiga

THE MC 68000 AND THE AMIGA SPECIAL-PURPOSE
HARDWARE ‘

VCR AND DIRECT CAMERA INTERFACE

PRIMARY AND SECONDARY MEMORY

PERIPHERALS

System Expandability and Adaptability

Chapter 2 COPROCESSOR HARDWARE

Introduction .

ABOUT THIS CHAPTER

What is a Copper Instruction?

The MOVE Instruction

The WAIT Instruction

HORIZONTAL BEAM POSITION

VERTICAL BEAM POSITION

THE COMPARISON ENABLE BITS

Using the Copper Registers

LOCATION REGISTERS

JUMP STROBE ADDRESS

CONTROL REGISTER

Putting Together a Copper Instruction List

COMPLETE SAMPLE COPPER LIST

LOOPS AND BRANCHES

Starting and Stopping the Copper

STARTING THE COPPER AFTER RESET

STOPPING THE COPPER

Advanced Topics

THE SKIP INSTRUCTION

COPPER LOOPS AND BRANCHES AND COMPARISON
ENABLE

USING THE COPPER IN INTERLACED MODE

USING THE COPPER WITH THE BLITTER ...

THE COPPER AND THE 68000

Summary of Copper Instructions

b et

S Ov OGN

21
22
23
24
24

Chapter 3 PLAYFIELD HARDWARE

Introduction

ABOUT THIS CHAPTER

PLAYFIELD FEATURES

Forming a Basic Playfield

HEIGHT AND WIDTH OF THE PLAYFIELD ...

BIT-PLANES AND COLOR

SELECTING RESOLUTION ...

ALLOCATING MEMORY FOR BIT-PLANES

CODING THE BIT-PLANES FOR CORRECT COLORING
DEFINING THE SIZE OF THE DISPLAY WINDOW

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY
DATA

DISPLAYING AND REDISPLAYING THE PLAYFIELD
ENABLING THE COLOR DISPLAY

SUMMARY

EXAMPLES OF FORMING BASIC PLAYFIELDS

Forming a Dual-playfield Display

Bit-Plane Assignment in Dual-playfield Mode

COLOR REGISTERS IN DUAL-PLAYFIELD MODE

DUAL-PLAYFIELD PRIORITY AND CONTROL

ACTIVATING DUAL-PLAYFIELD MODE

SUMMARY

Bit-planes and Display Windows of All Sizes

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY
WINDOW

MAXIMUM DISPLAY WINDOW SIZE

Moving (Scrolling) Playfields

VERTICAL SCROLLING

HORIZONTAL SCROLLING

SUMMARY

Advanced Topics

INTERACTIONS— PLAYFIELDS AND OTHER OBJECTS
HOLD-AND-MODIFY MODE

FORMING A DISPLAY WITH SEVERAL DIFFERENT
PLAYFIELDS

USING AN EXTERNAL VIDEO SOURCE

SUMMARY OF PLAYFIELD REGISTERS

Summary of Color Selection

COLOR REGISTER CONTENTS

SOME SAMPLE COLOR REGISTER CONTENTS

COLOR SELECTION IN LOW-RESOLUTION MODE
COLOR SELECTION IN HOLD-AND-MODIFY MODE
COLOR SELECTION IN HIGH-RESOLUTION MODE

-X-

27
27
28
28
33
34
34
38
41
44
46

49
52
52
53
55
58
60
62
64
64
65
65

65
72
73
73
74
78
79
79
79

Chapter 4 SPRITE HARDWARE .. 91

Introduction 91
ABOUT THIS CHAPTER 92
Forming a Sprite 92
SCREEN POSITION 92
SIZE OF SPRITES 95
SHAPE OF SPRITES 95
SPRITE COLOR 96
DESIGNING A SPRITE 98
BUILDING THE DATA STRUCTURE 99
Displaying a Sprite 104
SELECTING A DMA CHANNEL AND SETTING THE
POINTERS ' 105
RESETTING THE ADDRESS POINTERS 106
SPRITE DISPLAY EXAMPLE 106
Moving a Sprite 108
Creating Additional Sprites 110
Reusing Sprite DMA Channels 111
Overlapped Sprites 114
Attached Sprites : 116
Manual Mode 119
Sprite Hardware Details 120
-Summary of Sprite Registers 124
POINTERS 124
CONTROL REGISTERS 125
DATA REGISTERS 126
Summary of Sprite Color Registers 127
Chapter 5 AUDIO HARDWARE 131
Introduction 131
INTRODUCING SOUND GENERATION 132
THE AMIGA SOUND HARDWARE 135
Forming and Playing a Sound 136
DECIDING WHICH CHANNEL TO USE 136
CREATING THE WAVEFORM DATA 137
TELLING THE SYSTEM ABOUT THE DATA 138
SELECTING THE VOLUME 139
SELECTING THE DATA OUTPUT RATE 140
PLAYING THE WAVEFORM . 143
STOPPING THE AUDIO DMA 144
SUMMARY ... 145
EXAMPLE 145
Producing Complex Sounds 147

JOINING TONES 147

xi-

PLAYING MULTIPLE TONES AT THE SAME TIME : 149

MODULATING SOUND 149
Producing High-quality Sound e 152
MAKING WAVEFORM TRANSITIONS 152
SAMPLING RATE 152
EFFICIENCY 153
NOISE REDUCTION 154
ALTASING DISTORTIONooovieeisseecnsssesssssssssssassssssssssssssssssssssassssrssenns 154
LOW-PASS FILTER X . 156
Using Direct (Non-DMA) Audio Outputb ..o 157
The Equal-tempered Musical Scale ... 158
Decibel Values for Volume Ranges 160
The Audio State MACKINEooooooeoeeeeeeeeeeeeeeeeeeeeteeeeeeeseeeeseseeeeesseeemsannns 161
Chapter 6 BLITTER HARDWARE 165
INEPOAUCEION ... eeesiee s sssssrsssssssssssee s s ssssssssssssss s sessssn 165
DALA COPYINEG oot seeesssssmassssssase s s ssssssssssssssssssrass 167
Pointers and Modulos 168
Ascending and Descending Addressing ..o 170
Rectangular or Linear Address Scanning 171
Blitter Logic OPerationsoooeoeoeoeoeesesseooecoeseooeeeeeesesesesssssssssssssessssssseons 171
DESIGNING THE LF CONTROL BYTE WITH LOGIC
0] 074 § (01 = SO 172
DESIGNING THE LF CONTROL BYTE WITH VENN
DIAGRAMS ..o eeeeerescesssessesssoseasssssassssensssenssseseseesessaseseaseaseaseassessassseesrasseasnes 175
SRIFEITIE, .o sess st ssseseseses s s sres st srse s 177
Masking e sp s s st enes 178
Z,8TO DELECHION ... sssresssssessssssssssssssssssmssssssesssssssssssssssssossssssasssssses 179
Area Filling et e et et e et et 180
INCLUSIVE (NORMAL) AREA FILLING ..o 180
EXCLUSIVE AREA FILLING ... eveeeeeseessvessesesssanes 182
| DT (T30 B 4 o . 183
OCTANTS IN LINE DRAWINGoooooioeeeeeeeeveeeersronenes . 184
Blitter Operations and System DMA ... 186
BLITTER DMA PRIORITY ... rrentererera et aen s sensarene 186
DMA TIME SLOT ALLOCATIONooooooeeeeeeceseescenssessessssssssressssoees 186
BIT-PLANE/PROCESSOR BUS SHARING 189
EFFECTS OF DIFFERENT DISPLAY SIZESocooooovoeeeeeeereeseensossssssssns 191
EFFECTS OF BLITTER OPERATION svosssessmeessssessennes . 191
Complete Blitter Example 193

Blitter Block Diagram . 195

-Xii-

Chapter 7 SYSTEM CONTROL HARDWARE

Introduction

Video Priorities

FIXED SPRITE PRIORITIES .,

HOW SPRITES ARE GROUPED

UNDERSTANDING VIDEO PRIORITIES

SETTING THE PRIORITY CONTROL REGISTER

Collision Detection

HOW COLLISIONS ARE DETERMINED

HOW TO INTERPRET THE COLLISION DATA

HOW COLLISION DETECTION IS CONTROLLED

Beam Position Detection

USING THE BEAM POSITION COUNTER
Interrupts :

NONMASKABLE INTERRUPT

MASKABLE INTERRUPTS

USER INTERFACE TO THE INTERRUPT SYSTEM
INTERRUPT CONTROL REGISTERS

SETTING AND CLEARING BITS

DMA Control

Chapter 8 INTERFACE HARDWARE

Introduction ...

Controller Port Interface

READING THE CONTROLLER PORT

Disk Controller

DISK SELECTION, CONTROL, AND SENSING

OTHER REGISTERS IN DISK OPERATIONS ...

DISK INTERRUPTS

The Keyboard

HOW THE KEYBOARD DATA IS RECEIVED

TYPE OF DATA RECEIVED

LIMITATIONS OF THE KEYBOARD

Parallel Input/Output Interface

Serial Interface

INTRODUCTION TO SERIAL CIRCUITRY

.......

SETTING THE BAUD RATE

SETTING THE RECEIVE MODE

CONTENTS OF THE RECEIVE DATA REGISTER

HOW OUTPUT DATA IS TRANSMITTED

SPECIFYING THE REGISTER CONTENTS

Audio Output Connections

Display Output Connections

-xiii-

197
197
198
198
199
199
200
202
202
202
203
205
205
207
207
207
207
208
208
212

215
215
216
217
227
228
232
235
236
236
236
239
240
240
240
240
241
241
243
244
245
245

Appendix A Register Summary—Alphabetical Order

Appendix B Register Summary—Address Order

Appendix C Custom Chip Pin Allocation List

Appendix D System Memory Map

Appendix E Interfaces

Appendix F Peripheral Interface Adapters

Appendix G Amiga Auto-configuration Architecture

Appendix H Keyboard

Glossary

Index

-X1v-

Glossary-1

Index-1

Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
" Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7

Figures

Interlaced Bit-Plane in RAM - 400 Lines Long

How the Video Display Picture Is Produced

What Is a Pixel?

How Bit-planes Select a Color

Significance of Bit-Plane Data in Selecting Colors

Interlacing
Effect of Interlaced Mode on Edges of Objects

Memory Organization for a Basic Bit-Plane

Combining Bit-planes

Positioning the On-screen Display

Data Fetched for the First Line When Modulo = 0

Data Fetched for the Second Line When Modulo = 0

A Dual-playfield Display

How Bit-Planes Are Assigned to Dual Playfields

Memory Picture Larger than the Display

Data Fetch for the First Line When Modulo = 40

Data Fetch for the Second Line When Modulo = 40 _

Data Layout for First Line—Right Half of Big Picture

Data Layout for Second Line—Right Half of Big Picture
Display Window Horizontal Starting Position

Display Window Vertical Starting Position

Display Window Horizontal Stopping Position

Display Window Vertical Stopping Position

Vertical Scrolling

Horizontal Scrolling

Memory Picture Larger Than the Display Window

Data for Line 1 - Horizontal Scrolling

Data for Line 2 - Horizontal Scrolling

Defining Sprite On-screen Position

Position of Sprites

Shape of Spaceship
Sprite with Spaceship Shape Defined

Sprite Color Definition

Color Register Assignments

Data Structure Layout

-XV-

23
29
30
32
33
39
40
43
45
47
50
51
59
61
66
67
67
68
68
70
70
71
72
74
75
77
77
77
93
94
96
96
97
98
101

Figure 4-8
Figure 4-9

Figure 4-10 Typical Data Structure for Sprite Re-use
Figure 4-11 Overlapping Sprites (Not Attached)
Figure 4-12 Placing Sprites Next to Each Other
Figure 4-13 Sprite Control Circuitry

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9

Figure 6-10 Octants for Line Drawing
Figure 6-11 DMA Time Slot Allocation
Figure 6-12 Normal 68000 Cycle
Figure 6-13 Time Slots Used by a Six-bit-plane Display
Figure 6-14 Time Slots Used by a High-resolution Display

Figure 7-1
Figure 7-2
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5

Sprite Priority

Typical Example of Sprite Reuse

Sine Waveform

Digitized Amplitude Values
Example Sine Wave

Wayveform with Multiple Cycles

Frequency Domain Plot of Low-Pass Filter
Noise-free Output (No Aliasing Distortion)

Some Aliasing Distortion

Audio State Diagram

How Images are Stored in Memory

Bit-plane Image Larger than the Blitter Source Window

Blitter Minterm Venn Diagram

A Packed Font

Blitter Masking Example

Area-fill Example — Bar Chart

Use of the FCI Bit - Bit Is a 0

Use of the FCIBit -Bit Isa 1

Single-Point Vertex Example

Inter-Sprite Fixed Priorities

Analogy for Video Priority

Controller Plug and Computer Connector

Typical Paddle Controller Connection

The Amiga Keyboard, Showing Keycodes in Hexadecimal
Starting Appearance of SERDAT and Shift Register

Ending Appearance of Shift Register

-XVi-

111
112
113
115
116
122
133
135
142
153
155
155
156
164
168
169
176
178
179
180
181
182
183
185
188
189
190
190
198
199
216
221
239
244
244

Chapter 1

INTRODUCTION

The Amiga is a low-cost, high-performance computer with advanced graphics and sound
features. This chapter describes the Amiga’s hardware components and gives a brief
overview of its graphics and sound features.

Components of the Amiga

These are the hardware components of the Amiga:

Introduction 1

o Motorola MC 68000 16/32-bit main processor.
o 256K bytes of internal RAM, expandable to 512K.

o 256K bytes of ROM containing a real-time, multi-tasking operating system with
sound, graphics, and animation support routines.

o Built-in 3 1/2-inch double-sided disk drive.

o Expansion disk port for connecting up to three additional disk drives, which may be
either 3-1/2 inch or 5-1/4 inch, double-sided.

o Fully programmable serial port.
o Fully programmable parallel port.
o Two-button opto-mechanical mouse.

o Two reconfigurable controller ports (for mice, joysticks, paddles, or custom
controllers).

o Detached 89-key keyboard with calculator pad, function keys, and cursor keys.
o Ports for simultaneous composite video and analog or digital RGB output.

o Ports for audio output to left and right stereo channels from four special-purpose
audio channels.

o Expansion connector that allows you to add RAM, additional disk drives (floppy or
hard), peripherals, or coprocessors.

THE MC 68000 AND THE AMIGA SPECIAL-PURPOSE HARDWARE

The Motorola 68000 is a 16/32-bit microprocessor operating at 7.16 megahertz. In the

Amiga, the 68000 can address over 8 megabytes of contiguous random access memory
(RAM).

The performance of the 68000 is enhanced by a system design that gives it every alter-
nate bus cycle, allowing it to run at full rated speed most of the time. As described in
the section below, the special-purpose hardware can steal time from the 68000 for jobs it
can do more efficiently than the 68000. Even then, such cycle stealing only blocks the
68000’s access to the shared memory. When using ROM or external memory, the 68000
always runs at full speed.

2 Introduction

Among other functions, the special-purpose hardware provides the following:

o

Bit-plane-generated high-resolution graphics typically producing 320 by 200 non-
interlaced displays and 320 by 400 interlaced displays in 32 colors, and 640 by 200
non-interlaced or 640 by 400 interlaced displays in 16 colors. There is also a special
mode that allows you to have up to 4,096 colors on-screen simultaneously.

A custom display coprocessor that allows changes to most of the special-purpose
registers in synchronization with the position of the video beam. This allows such
special effects as mid-screen changes to the color palette, splitting the screen into
multiple horizontal slices, each having different video resolutions and color depths,
beam-synchronized interrupt generation for the 68000, and more. The coprocessor
can trigger many times per screen. It can trigger in the middle of lines, as well as at
the beginning or during the blanking interval. The coprocessor itself can directly
affect most of the registers of the special-purpose hardware, freeing the 68000 for
general-purpose computing tasks.

32 system color registers, each of which contains a twelve-bit number as four bits of
RED, four bits of GREEN, and four bits of BLUE intensity information. This
allows a system color palette of 4,096 different choices of color for each register.
Although an RGB monitor provides the best available output for the system graph-
ics, text, and color, the composite video signal has been carefully designed to provide
maximum NTSC compatibility. This signal may be video-taped or fed to a standard
composite video monitor.

Eight reusable 16-bit-wide sprites with up to 15 color choices per sprite pixel (when
sprites are paired). A sprite is an easily movable graphics object whose display is
entirely independent of the background (called a playfield); sprites can be displayed
“over” or “under” this background. A sprite is 16 low-resolution pixels wide and an
arbitrary number of lines tall. After producing the last line of a sprite on the screen,
a sprite DMA (direct memory access) channel may be used to produce yet another
sprite image elsewhere on-screen (with at least one horizontal line between each
reuse of a sprite processor). Thus, you can produce many small sprites by simply
reusing the sprite processors appropriately.

Dynamically-controllable inter-object priority, with collision detection. This means
that the system can dynamically control the video priority between the sprite
objects and the bit-plane backgrounds (playfields). You can control which object or
objects appear “on top” at any time.

Additionally, you can use system hardware to detect collisions between objects and
have your program react to such collisions.

Introduction 3

o Custom bit-blitter used for high speed data movement, adaptable to bit-plane ani-
mation. The blitter has been designed to efficiently retrieve data from up to three
sources, combine the data in one of 256 different possible ways, and optionally store
the combined data in a destination area. This is one of the situations where the
68000 gives up memory cycles to a DMA channel that can do the job more
efficiently. The bit-blitter, in a special mode, draws patterned lines into rectangu-
larly organized memory regions at a speed of about 1 million dots per second; and it
can efficiently handle area fill.

o Audio consisting of four low-noise digital channels with independently programmable
volume and sampling rate. The audio channels retrieve their control and data via
direct memory access. Once started, each channel can automatically play a specified
waveform without further processor interaction. Two channels are directed into
each of the two stereo audio outputs. The audio channels may be linked together if
desired to provide amplitude or frequency modulation or both forms of modulation
simultaneously.

o DMA-controlled floppy disk read and write on a full-track basis. This means that
the built-in disk can read something over 5.6K bytes of data in a single disk revolu-
tion (11 sectors of 512 bytes each).

All of the special functions described above are produced by three custom-designed VLSI
circuits, which work in concert with the 68000. These circuits and the 68000 use the
shared memory on a fully interleaved basis. Since the 68000 only needs to access the
memory bus during each alternate clock cycle in order to run full-speed, the rest of the
time the memory bus is free for other activities.

The special-purpose hardware uses the memory bus during these free cycles, effectively
allowing the 68000 to run at full rated speed most of the time. We say “most of the
time” because there are some occasions when the special-purpose hardware steals
memory cycles from the 68000, but with good reason. Specifically, the coprocessor and
the data-moving DMA channel called the blitter can each steal time from the 68000 for
jobs they can do better than the 68000. Thus, the system DMA channels are designed
with maximum performance in mind; the job to be done is performed by the most
efficient hardware element available. In addition, sprites, audio, and disk DMA also
steal cycles when in operation.

Another primary feature of the Amiga hardware is the ability to dynamically control
which part of memory is used for the background display, audio, and sprites. The
Amiga is not limited to a small, specific area of RAM for a frame buffer. Instead, the
system allows display bit-planes, sprite-processor control lists, coprocessor instruction

lists, or audio channel control lists to be located anywhere within the lowest 512K of the
memory map.

4 Introduction

This same region of memory can be accessed by the bit-blitter. This means, for exam-
ple, that the user can store partial images at scattered areas of memory and use these
images for animation effects by rapidly replacing on-screen material while saving and res-
toring background images. In fact, the Amiga includes firmware support for display
definition and control as well as support for animated objects embedded within
playfields.

VCR AND DIRECT CAMERA INTERFACE

In addition to the connections for NTSC composite Amiga video and both digital and
analog RGB monitors, the system can be expanded to include a VCR or camera inter-
face. This system is capable of synchronizing with an external video source and replac-
ing the system background color with the external image. This allows for the develop-
ment of fully integrated video images with computer-generated graphics. Laser disk
input is accepted in the same manner.

PRIMARY AND SECONDARY MEMORY

Primary memory in the Amiga consists of 256K bytes of ROM and 256K bytes of RAM.
A RAM expansion cartridge is available as an option. Secondary memory is provided by
a built-in 3 1/2-inch floppy disk drive. Disks are 80-track, double-sided, and formatted
as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per disk). A special util-
ity can read and write disk files compatible with the Apple II[tm]. In addition, the disk
controller can read and write 320/360K IBM PC[tm] formatted disks. External 3 1/2-
inch or 5 1/4-inch disk drives can be added to the system through the expansion
connector.

PERIPHERALS

Circuitry for some of the peripherals resides on one of the custom chips; other chips han-
dle various signals not specifically assigned to any of the custom chips, including modem
controls, disk status sensing, disk motor and stepping controls, ROM enable, parallel
input/output interface, and keyboard interface.

The Amiga includes a standard RS-232-C serial port for external serial input/output
devices.

A detached, professional-quality keyboard is included in the base system. You can store
the keyboard beneath the system cabinet. For maximum flexibility, both key-down and
key-up signals are sent.

Introduction 5

For those who prefer incremental cursor control, there are cursor keys on the keyboard.
You can attach many other types of controllers through the two controller ports on the
side of the base unit. You can use a mouse, joystick, keypad, trackball, or steering
wheel controller in either of the controller ports. (A light pen can be attached to port 0.)

System Expandability and Adaptability

You can add peripheral devices to the Amiga’s expansion connector, add additional
external RAM on the same expansion connector, or upgrade internal RAM to 512K.
Additional disk units may be daisy-chained from a connector at the rear of the unit for a
total of three extra drives.

The system software is highly adaptable to other host operating systems. The Amiga’s
graphics support routines are designed to make the user interface as friendly as possible.
New peripheral devices are recognized and used by system software through a well-
defined, well-documented linking procedure.

6 Introduction

Chapter 2

COPROCESSOR HARDWARE

Introduction

The Copper is a general purpose coprocessor that resides in one of the Amiga’s custom
chips. It retrieves its instructions via direct memory access (DMA). The Copper can
control nearly the entire graphics system, freeing the 68000 to execute program logic; it
can also directly affect the contents of most of the chip control registers. It is a very
powerful tool for directing mid-screen modifications in graphics displays and for directing
the register changes that must occur during the vertical blanking periods. Among other

things, it can control register ‘upda,tes; reposition sprites, change the color palette,
update the audio channels, and control the blitter.

¢ Coprocessor Hardware 7

One of the features of the Copper is its ability to WAIT for a specific video beam posi-
tion, then MOVE data into a system register. During the WAIT period, the Copper
examines the contents of the video beam position counter directly. This means that
while the Copper is waiting for the beam to reach a specific position, it does not use the
memory bus at all. Therefore, the bus is free(j for use by the other DMA channels or by
the 68000.

When the WAIT condition has been satisfied, the Copper steals memory cycles from
either the blitter or the 68000 to move the specified data into the selected special-
purpose register.

The Copper is a two-cycle processor that requests the bus only during odd-numbered
memory cycles. This prevents collision with audio, disk, refresh, sprites, and most low-
resolution display DMA access, all of which use only the even-numbered memory cycles.
The Copper, therefore, needs priority over only the 68000 and the blitter (the DMA
channel that handles animation, line drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its
instructions only from the lowest 512K bytes of system memory.

ABOUT THIS CHAPTER

In this chapter, you will learn how to use the special Copper instruction set to organize
mid-screen register value modifications and pointer register set-up during the vertical
blanking interval. The chapter shows how to organize Copper instructions into Copper
lists, how to use Copper lists in interlaced mode, and how to use the Copper with the
blitter. The Copper is discussed in this chapter in a general fashion. The chapters that

deal with playfields, sprites, audio, and the blitter contain more specific suggestions for
using the Copper.

What is a Copper Instruction?

As a coprocessor, the Copper adds its own instruction set to the instructions already

provided by the 68000. The Copper has only three instructions, but you can do a lot
with them:

8 Coprocessor Hardware

o WAIT for a specific screen position specified as x and y coordinates.
o MOVE an immediate data value into one of the special-purpose registers. -

o SKIP the next instruction if the video beam has already reached a specified
screen position.

All Copper instructions consist of two 16-bit words in sequential memory locations.
Each time the Copper fetches an instruction, it fetches both words. The MOVE and
SKIP instructions require two memory cycles and two instruction words. Because only
the odd memory cycles are requested by the Copper, four memory cycle times are
required per instruction. The WAIT instruction requires three memory cycles and six
memory cycle times; it takes one extra memory cycle to wake up.

Although the Copper can directly affect only machine registers, it can aflect the memory
by setting up a blitter operation. More information about how to use the Copper in
controlling the blitter can be found in the sections called “Control Register” and “Using
the Copper with the Blitter.”

The WAIT and MOVE instructions are described below. The SKIP instruction is
described in the “Advanced Topics” section.

The MOVE Instruction |

The MOVE instruction transfers data from RAM to a register destination. The
transferred data is contained in the second word of the MOVE instruction; the first word
contains the address of the destination register. This procedure is shown in detail in the
section called ‘“‘Summary of Copper Instructions.”

FIRST INSTRUCTION WORD (IR1)

Bit 0 Always set to 0.
Bits 8- 1 Register destination address (DAS-1).
Bits 15-9 Not used, but should be set to O.

SECOND INSTRUCTION WORD (IR2)

Bits 15- 0 16 bits of data to be transferred (moved)
to the register destination.

Coprocessor Hardware 9

The Copper can store data into the following registers:

o Any register whose address is $20 or above.l

o Any register whose address is between $10 and $20 if the Copper danger bit is a
1. The Copper danger bit is in the Copper’s control register, COPCON, which
is described in the “Control Register” section.

o The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all the machine register addresses.

The following example MOVE instructions point bit-plane pointer 1 at $21000 and bit-
plane pointer 2 at $25000.2

DC.W
DC.W
DC.W
DC.W

» $00E0,$0002

$00E2,$1000
$00E4,$0002
$00ES,$5000

;Move $0002 to address $0E0 (BPL1PTH)
;Move $1000 to address $0E2 (BPL1PTL)
;:Move $0002 to address $0E4 (BPL2PTH)
:Move $5000 to address $0E6 (BPL2PTL)

1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.
2 All sample code segments are in assembler language.

10 Coprocessor Hardware

The WAIT Instruction

The WAIT instruction causes the Copper to wait until the video beam counters are
equal to (or greater than) the coordinates specified in the instruction. While waiting, the
Copper is off the bus and not using memory cycles.

The first instruction word contains the vertical and horizontal coordinates of the beam
position. The second word contains enable bits that are used to form a “mask” that
tells the system which bits of the beam position to use in making the comparison.

FIRST INSTRUCTION WORD (IR1)

Bit 0 Always set to 1.
Bits 15-8 Vertical beam position (called VP).
Bits 7-1 Horizontal beam position (called HP).

SECOND INSTRUCTION WORD (IR2)

Bit 0 Always set to 0.

Bit 15 The blitter-finished-disable bit.
Normally, this bit is a 1.
(See the “Advanced Topics” section below.)

Bits 14 - 8 Vertical position compare enable bits (called VE).
Bits 7-1 = Horizontal position compare enable bits (called HE).

The following example WAIT instruction waits for scan line 150 ($96) with the horizon-
tal position masked off.

DC.W $9601,$FF00 ' ; Wait for line 150,
; ignore horizontal counters

The following example WAIT instruction waits for scan line 255 and horizontal position
254. This event will never occur, so the Copper stops until the next vertical blanking
interval begins.

DC.W $FFFF $FFFE ; Wait for line 255,
; H = 254 (ends Copper list)

Coprocessor Hardware 11

The following notes apply to both the WAIT instruction and to the SKIP instruction,
which is described below in the “Advanced Topics” section.

HORIZONTAL BEAM POSITION

"This
~ n Horlzontal
blankmg falls in the range of $OF to $35 The standard screen (320 plxels wide) has an
unused horizontal portion of $04 to $47 (during which only the background color is -
displayed).

" VERTICAL BEAM POSITION

The vertical beam position can be resolved to one line, with a maximum value of 255.
There are actually 262 possible vertical positions. Some minor complications can occur if
you want something to happen within these last six or seven scan lines. Because there
are only eight bits of resolution for vertical beam position (allowing 256 different posi-
tions), one of the simplest ways to handle this is shown below.

Instruction Explanation

[... other instructions ...]

WAIT for position (0,255) At this point, the vertical
counter appears to wrap to 0
because the comparison
works on the least significant
bits of the vertical count.

WAIT for any horizontal position Thus the total of 256 + 6 =
with vertical position O through 6, 262 lines of video beam travel
covering the last 6 lines of the scan during which Copper instruc-
before vertical blanking occurs. tions can be executed.

12 Coprocessor Hardware

THE COMPARISON ENABLE BITS

Bits 14-1 are normally set to all 1s. The use of the comparison enable bits is described
later in the “Advanced Topics” section.

Using the Copper Registers

There are several machine registers and strobe addresses dedicated to the Copper:
o Location registers
o Jump address strobes

o Control register

LOCATION REGISTERS
The Copper has two sets of location registers:

COP1LCH High 3 bits of first Copper list address.
COPILCL Low 16 bits of first Copper list address.
COP2LCH High 3 bits of second Copper list address.

COP2LCL Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that
contains the address of some data. The register with the lower address always has a
name ending in “H” and contains the most significant data, or high 3 bits of the
address. The register with the higher address has a name ending in “L” and contains
the least significant data, or low 15 bits of the address. Therefore, you write the 18-bit
address by moving one long word to the register whose name ends in “H.” This is

because when you write long words with the 68000, the most significant word goes in the
lower addressed word.

In the case of the Copper location registers, you write the address to COP1LCH. In the
following text, for simplicity, these addresses are referred to as COP1LC or COP2LC.

Coprocessor Hardware 13

The Copper location registers contain the two indirect jump addresses used by the
Copper. The Copper fetches its instructions by using its program counter and incre-
ments the program counter after each fetch. When a jump address strobe is written, the
corresponding location register is loaded into the Copper program counter. This causes
the Copper to jump to a new location, from which its next instruction will be fetched.
Instruction fetch continues sequentially until the Copper is interrupted by another jump
address strobe.

NOTE

At the start of each vertical blanking interval, COP1LC is automatically used
to start the program counter. That is, no matter what the Copper is doing,
when the end of vertical blanking occurs, the Copper is automatically forced
to restart its operations at the address contained in COP1LC.

JUMP STROBE ADDRESS

When you write to a Copper strobe address, the Copper reloads its program counter
from the corresponding location register. The Copper can write its own location regis-
ters and strobe addresses to perform programmed jumps. For instance, you might
MOVE an indirect address into the COP2LC location register. Then, any MOVE

instruction that addresses COPJMP2 strobes this indirect address into the program
counter.

There are two jump strobe addresses:

COPJMP1 Restart Copper from address contained in COP1LC.
COPJMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER

The Copper can access some special-purpose registers all of the time, some registers only
when a special control bit is set to a 1, some registers not at all. The registers that the
Copper can always affect are numbered $20 through $FF inclusive. Those it cannot
affect at all are numbered $00 to $OF inclusive. (See appendix B for a list of registers in
address order.) The Copper control register is within the third, always protected, group.
Thus it takes deliberate action on the part of the 68000 to allow the Copper to write
into a specific range of the special-purpose registers.

14 Coprocessor Hardware

The Copper control register, called COPCON, contains only one bit, bit #1. This bit,
called CDANG (for Copper Danger Bit) protects all registers numbered between $10 and
$1F inclusive. This range includes the blitter control registers. When CDANG is 0,
these registers cannot be written by the Copper. When CDANG is 1, these registers can
be written by the Copper. Preventing the Copper from accessing the blitter control
registers prevents a “runaway” Copper (caused by a poorly formed instruction list) from
accidentally affecting system memory.

NOTE

The CDANG bit is cleared after a reset.

Putting Together a Copper Instruction List

The Copper instruction list contains all the register resetting done during the vertical
blanking interval and the register modifications necessary for making mid-screen altera-
tions. As you are planning what will happen during each display field, you may find it
easier to think of each aspect of the display as a separate subsystem, such as playfields,
sprites, audio, interrupts, and so on. Then you can build a separate list of things that
must be done for each subsystem individually at each video beam position.

When you have created all these intermediate lists of things to be done, you must merge
them together into a single instruction list to be executed by the Copper once for each

display frame. The alternative is to create this all-inclusive list directly, without the
intermediate steps.

For example, the bit-plane pointers used in playfield displays and the sprite pointers
must be rewritten during the vertical blanking interval so the data will be properly
retrieved when the screen display starts again. This can be done with a Copper instruc-
tion list that does the following:

WAIT until first line of the display
MOVE data to bit-plane pointer 1
MOVE data to bit-plane pointer 2
MOVE data to sprite pointer 1
and so on

As another example, the sprite DMA channels that create movable objects can be reused
multiple times during the same display field. You can change the size and shape of the
reuses of a sprite; however, every multiple reuse normally uses the same set of colors

Coprocessor Hardware 15

during a full display frame. You can change sprite colors mid-screen with a Copper
instruction list that waits until the last line of the first use of the sprite processor and
changes the colors before the first line of the next use of the same sprite processor:

WAIT for first line of display

MOVE firstcolorl to COLOR17

MOVE firstcolor2 to COLOR18

MOVE firstcolor3 to COLOR19

WAIT for last line +1 of sprite’s first use
MOVE secondcolorl to COLOR17
MOVE secondcolor2 to COLOR18
MOVE secondcolor3 to COLOR19

and so on

As you create Copper instruction lists, note that the final list must be in the same order
as that in which the video beam creates the display. The video beam traverses the
screen from position (0,0) in the upper left hand corner of the screen to the end of the
display (226,263) in the lower right hand corner. The first O in (0,0) represents the x
position. The second O represents the y position. For example, an instruction that does
something at position (0,100) should come after an instruction that affects the display at
position (0,60).

Note that because of the form of the WAIT instruction, you can sometimes get away
with not sorting the list in strict video beam order. The WAIT instruction causes the
Copper to wait until the value in the beam counter is equal to or greater than the value
in the instruction. This means, for example, if you have instructions following each
other like this:

WAIT for position (64,64)
MOVE data

WAIT for position (60,60)
MOVE data

the Copper will perform both moves, even though the instructions are out of sequence.
The “greater than’ specification prevents the Copper from locking up if the beam has

already passed the specified position. A side effect is that the second MOVE below will
be performed:

16 Coprocessor Hardware

WAIT for position (60,60)
MOVE data

WAIT for position (60,60)
MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than
the position shown in the instructions. Therefore, the second MOVE will also be per-

formed.

Note also that the above sequence of instructions could just as easily be

WAIT for position (60,60)
MOVE data
MOVE data
MOVE data

because multiple moves can follow a single WAIT.

COMPLETE SAMPLE COPPER LIST

The following example shows a complete Copper list. This list is for two bit-planes—
one at $21000 and one at $25000. At the top of the screen, the color registers are loaded

with the following values:

Register

COLORO00
COLORO1
COLORO02
COLORO3

At line 150 on the screen, the color registers are reloaded:

Color

white
red
green

blue

Coprocessor Hardware 17

Register Color
COLORO0D black
COLORO1 yellow
COLOR02 cyan
COLOR03 magenta
The complete Copper list follows.
COPPERLIST:
DC.W -$00E0,$0002 :Move $0002 into address $0E0 (BPL1PTH)
DC.W $00E2,$1000 :Move $1000 into address $0E2 (BPL1PTL)
DC.W $00E4,$0002 :Move $0002 into address $0E4 (BPL2PTH)
DC.W $00E6,$5000 :Move $5000 into address $0E6 (BPL2PTL)

]

: Load color registers

)
DC.W
DC.W
DCW
DC.W

$0180,$0FFF :Move white into address $180 (COLOR00)

$0182,$0F00 :Move red into address $182 (COLOR01)
$0184,$00F0 :Move green into address $184 (COLOR02)
$0186,$000F :Move blue into address $186 (COLOR03)

;
; Wait for line 150

’

DC.W

.
’

?
DC.W
DC.W
DC.W
DC.W

$9601,$FF00 sWait for line 150, ignore horiz. position

; Reload color registers

$0180,$0000 sMove black into address $0180 (COLOR00)
$0182,30FF0 :Move yellow into address $0182 (COLORO01)
$0184,300FF :Move cyan into address $0184 (COLOR02)
$0186,50FOF ;Move magenta into address $0186 (COLOR03) .

b
; End Copper list by waiting for the impossible

’

DC.W

$FFFF $FFFE ;Wait for line 255, H = 254 (never happens)

For more information about color registers, see chapter 3, “Playfield Hardware.”

18 Coprocessor Hardware

LOOPS AND BRANCHES

Loops and branches in Copper lists are covered in the “Advanced Topics” section below.

Starting and Stopping the Copper

STARTING THE COPPER AFTER RESET

At power-on or reset time, you must initialize one of the Copper location registers
(COPILC or COP2LC) and write to its strobe address before Copper DMA is turned on.
This ensures a known start address and known state. Usually, COP1LC is used because
this particular register is reused during each vertical blanking time. The following
sequence of instructions shows how to initialize a location register. It is assumed that
the user has already created the correct Copper instruction list at location “mycoplist.”

MOVE.L MYCOPLIST, a0
MOVE.L A0, COP1LCH ; Write both COP1LCH and COP1LCL
MOVE.W COPJMP1, DO - ;Any access to this location '
; Jorces load from COPI1LC to
; Copper program counter
MOVE.W #SETBIT + COPPERDMA, DO
MOVE.W D0, DMACONW ;Enable Copper DMA

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs
the Copper will restart at the same location for each subsequent video screen. This

forms a repeatable loop which, if the list is correctly formulated, will cause the displayed
screen to be stable.

STOPPING THE COPPER

No stop instruction is provided for the Copper. To ensure that it will stop and do noth-
ing until the screen display ends and the program counter starts again at the top of the
instruction list, the last instruction should be to WAIT for an event that cannot occur.
A typical instruction is to WAIT for VP = $FF and HP = $FE. An HP of greater than
$E2 is not possible. When the screen display ends and vertical blanking starts, the

Copper will automatically be pointed to the top of its instruction list, and this final
WAIT instruction never finishes.

Coprocessor Hardware 19

You can also stop the Copper by disabling its ability to use DMA for retrieving instruc-
tions or placing data. The register called DMACON controls all of the DMA channels.
Bit 7, COPEN, enables Copper DMA when set to 1.

For information about controlling the DMA, see chapter 7, “System Control Hardware.”

Advanced Topics

THE SKIP INSTRUCTION

The SKIP instruction causes the Copper to skip the next instruction if the video beam
counters are equal to or greater than the value given in the instruction.

The contents of the SKIP instruction’s words are shown below. They are identical to
the WAIT instruction, except that bit O of the second instruction word is a 1 to identify
this as a SKIP instruction.

FIRST INSTRUCTION WORD (IR1)

Bit 0 Always set to 1.
Bits 15 -8 Vertical position (called VP).
Bits 7-1 Horizontal position (called HP).

Skip if the beam counter is equal to or
greater than these combined bits
(bits 15 through 1).

SECOND INSTRUCTION WORD (IR2)

Bit 0 Always set to 1.

Bit 15 The blitter-finished-disable bit.
(See “Using the Copper with the
Blitter” below.)

Bits 14- 8 Vertical position compare enable bits (called VE).
Bits 7-1 Horizontal position compare enable bits (called HE).

20 Coprocessor Hardware

The notes about horizontal and vertical beam position found in the discussion of the
WAIT instruction apply also to the SKIP instruction.

The following example SKIP instruction skips the instruction following it if VP (vertical
beam position) is greater than or equal to 100 ($64).

DC.W $6401,8FF01 ;If VP >= 100, skip neat instruction (ignore HP)

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE

You can change the value in the location registers at any time and use this value to con-
- struct loops in the instruction list. Before the next vertical blanking time, however, the
COP1LC registers must be repointed to the beginning of the appropriate Copper list.
The value in the COP1LC location registers will be restored to the Copper’s program
counter at the start of the vertical blanking period.

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of
the horizontal and vertical position are to be used for the beam counter comparison.
The position in instruction word 1 and the compare enable bits in instruction word 2 are
tested against the actual beam counters before any further action is taken. A position
bit in instruction word 1 is used in comparing the positions with the actual beam
counters if and only if the corresponding enable bit in instruction word 2 is set to 1. If
the corresponding enable bit is 0, the comparison is always true. For instance, if you
care only about the value in the last four bits of the vertical position, you set only the
last four compare enable bits, bits (11-8) in instruction word 2.

As another example, suppose you want to issue an interrupt each time a total of 16
vertical scan lines has occurred. In addition, you want the interrupts only between lines

80 and 160. The Copper instruction sequence below would do this. The enable “masks”
are specified with the instructions.

Before the Copper is told to begin this set of instructions, you would use the 68000 to
write the address of LOOP to COP2LC.

Coprocessor Hardware 21

; Copper list to interrupt the 68000 once every 16 scan lines,

; in the range VP = 80 through VP = 160.

H
DC.W $5001,$FFFE ;s Wait for VP = $50, HP = 0
DC.W $0F01,$0F00 s Wait for VP = zazx1111

?

s The following instruction writes to address $09C, the

s interrupt request register. Writing $8010 sets the Copper

s interrupt bit in the register, which will interrupt the 68000.

;
DC.W $009C,$8010 ;Move $8010 to $09C (interrupt 68000)
DC.W $A001,$FFO1 ;Skip next instruction if VP >= 160

H

; The next MOVE instruction doesn’t actually do a move. It forces

; the Copper to jump to the address in COP2LC. This must have been
; previously set by either the Copper or the 68000. If VP >= 160,

; then this instruction will be skipped.

DC.W $008A,$0000 ;Move 0 to COPJMP2 (COP2ZLC
; previously set)

USING THE COPPER IN INTERLACED MODE

An interlaced bit-plane display has twice the normal number of vertical lines on the
screen. Whereas a normal display has 200 lines, an interlaced display has 400 lines. In
interlaced mode, the video beam scans the screen twice from top to bottom, displaying
200 lines at a time. During the first scan, the odd-numbered lines are displayed. During
the second scan, the even-numbered lines are displayed and interlaced with the odd-
numbered ones. The scanning circuitry thus treats an interlaced display as two display
fields, one containing the even-numbered lines and one containing the odd-numbered
lines. Figure 2-1 shows how an interlaced display is stored in memory.

22 Coprocessor Hardware

Data on Data in
the Screen Memory
Odd field - line 1 Line 1
Even field - line 1 Line 2
0Odd field - line 2 Line 3
Even field - line 2 Line 4
Odd field - last line : Line 399
Even field - last line ‘ Line 400

Figure 2-1: Interlaced Bit-Plane in RAM - 400 Lines Long

The system retrieves data for bit-plane displays by using pointers to the starting address
of the data in memory. As you can see, the starting address for the even-numbered
fields is one line greater than the starting address for the odd-numbered fields. There-
fore, the bit-plane pointer must contain a different value for alternate fields of the inter-
laced display. This means that two separate Copper instruction lists are required.

To get the Copper to execute the correct list, you set an interrupt to the 68000 just
after the first line of the display. When the interrupt is executed, you change the con-
tents of the COPILC location register to point to the second list. Then, during the

vertical blanking interval, COPILC will be automatically reset to point to the original
list.

For more information about interlaced displays, see chapter 8, “Playfield Hardware.”

USING THE COPPER WITH THE BLITTER

If the Copper is used to start up a sequence of blitter operations, it must wait for the
blitter-finished interrupt before starting another blitter operation. Changing blitter
registers while the blitter is operating causes unpredictable results. For just this pur-
pose, the WAIT instruction includes an additional control bit, called BFD (for blitter

finished disable). Normally, this bit is a 1 and only the beam counter comparisons con-
trol the WAIT.

Coprocessor Hardware 23

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The
Copper will WAIT until the beam counter comparison is true and the blitter has
finished. The blitter has finished when the blitter-finished flag is set. This bit should be

unset with caution. It could possibly prevent some screen displays or prevent objects
from being displayed correctly.

For more information about using the blitter, see chapter 6, “Blitter Hardware.”

THE COPPER AND THE 68000

On those occasions when the Copper’s instructions do not suffice, you can interrupt the
68000 and use its instruction set instead. The 68000 can poll for interrupt flags set in

the INTREQ register by various devices. To interrupt the 68000, use the Copper MOVE
instruction to store a 1 into the following bits of INTREQ:

Table 2-1: Interrupting the 68000

Bit Number Name Function
15 SET/CLR Set/Clear control bit. Determines
if bits written with a 1 get set
or cleared.
4 COPEN Coprocessor interrupting 68000.

See chapter 7, “System Control Hardware,” for more information about interrupts.

Summary of Copper Instructions

The table below shows a summary of the bit positions for each of the Copper instruc-
tions. See appendix A for a summary of all registers.

24 Coprocessor Hardware

Table 2-2: Copper Instruction Summary

Move Wait Skip
Bit# IR1 | IR2 IR1 | IR2 IR1 | IR2
15 X RD15 VP7 | BFD VP7 | BFD
14 X RD14 VP6 | VE6 VP6 | VE6
13 X RD13 VP5 | VE5 VP5 | VE5
12 X RD12 VP4 | VE4 VP4 | VE4
11 X RD11 VP3 | VE3 VP3 | VE3
10 X RD10 VP2 | VE2 VP2 | VE2
09 X RDO9 VP1 | VE1 VP1 | VE1
08 DAS8 | RD08 VPO | VEO VPO | VEO
07 DA7 | RDO7 HP8 | HES8 HP8 | HES
06 DA6 | RDO06 HP7 | HE7 HP7 | HE7
05 DA5 | RDO5 HP6 | HE6 HP6 | HEG6
04 DA4 | RD04 HP5 | HES HP5 | HE5
03 DA3 | RDO3 HP4 | HE4 HP4 | HE4
02 DA2 | RD0O2 HP3 | HE3 HP3 | HE3
01 DA1 | RDO1 HP2 | HE2 HP2 | HE2
00 0 RDO0O 1 0 1 1

X = don’t care, but should be a O for upward compatibility
IR1 = first instruction word

IR2 = second instruction word

DA = destination address

RD = RAM data to be moved to destination register

VP = vertical beam position bit

HP == horizontal beam position bit

VE = enable comparison (mask bit)

HE = enable comparison (mask bit)

BFD = blitter-finished disable

Coprocessor Hardware 25

Chapter 3

PLAYFIELD HARDWARE

Introduction

The screen display of the Amiga consists of two basic parts— playfields, which are some-
times called backgrounds, and sprites, which are easily movable graphics objects. This
chapter describes how to directly access hardware registers to form playfields.

Playfield Hardware 27

ABOUT THIS CHAPTER

This chapter begins with a brief overview of playfield features, including definitions of
some fundamental terms, and continues with the following major topics:

(o]

o

o]

Forming a single “basic” playfield, which is a playfield the same size as the
display screen. This section includes concepts that are fundamental to forming
any playfield.

Forming a dual-playfield display in which one playfield is superimposed upon
another. This procedure differs from that of forming a basic playfield in some
details.

Forming playfields of various sizes and displaying only part of a larger playfield.
Moving playfields by scrolling them vertically and horizontally.

Advanced topics to help you use playfields in special situations.

For information about movable sprite objects, see chapter 4, “Sprite Hardware.” There
are also movable playfield objects, which are subsections of a playfield. To move por-
tions of a playfield, you use a technique called playfield animation, which is described in
chapter 6, “Blitter Hardware.”

PLAYFIELD FEATURES

The Amiga produces its video displays with raster display techniques. You create a
graphic display by defining one or more bit-planes in memory and filling them with 1s
and Os to determine the colors in your display. The picture you see on the screen is
made up of a series of horizontal video lines displayed one after the other.

28 Playfield Hardware

Each line represents one sweep of an electron beam
which is “painting’ the picture as it goes along.

Video Picture The video beam produces each line by sweeping
from left to right. It produces the full screen by
sweeping the beam from the top to the bottom,
one line at a time.

Figure 3-1: How the Video Display Picture Is Produced

The video beam produces about 262 video lines from top to bottom, of which 200 nor-
mally are visible on the screen. Each complete set of 262 lines is called a display field.
A complete display field is produced in approximately 1/60th of a second; this is known
as the field time. Between display fields, the video beam traverses the lines that are not

visible on the screen and returns to the top of the screen to produce another display
field. ’

The display area is defined as a grid of pixels. A pixel is a single picture element, the
smallest addressable part of a screen display. The drawings below show what a pixel is
and how pixels form displays.

Playfield Hardware 29

= The picture is formed from many elements.
Each element is called a pixel.

o Pixels are used together to build larger
_) graphic objects.
(w a8)
- i » - = >

320 Pixels 640 Pixels

\, J . J
tn normal resolution mode, In high resolution mode,
320 pixels fill a horizontal line. 640 pixels fill a horizontal line.

Figure 3-2: What Is a Pixel?

The Amiga has four basic display modes — interlaced, non-interlaced, low resolution,
and high resolution. In non-interlaced mode, the normal playfield has a height of 200
video lines. Interlaced mode gives finer vertical resolution — 400 lines in the same phy-
sical display area. In low-resolution mode, the normal playfield has a width of 320 pix-
els. High-resolution mode gives finer horizontal resolution — 640 pixels in the same phy-
sical display area. These modes can be combined, so you can have, for instance, an
interlaced, high-resolution display.

Note that the dimensions referred to as “normal” in the previous paragraph are nominal
dimensions and represent the normal values you should expect to use. Actually, you can
display larger playfields; the maximum dimensions are given in the section called “Bit-
Planes and Playfields of All Sizes.” Also, the dimensions of the playfield in memory are
often larger than the playfield displayed on the screen. You choose which part of this
larger memory picture to display by specifying a different size for the display window.

30 Playfield Hardware

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A
playfield wider than the screen can be scrolled horizontally, from left to right or right to
left. Scrolling is described in the section called “Moving (Scrolling) Playfields.”

In the Amiga graphics system, you can have up to thirty-two different colors in a single
playfield, using normal display methods. You can control the color of each individual
pixel in the playfield display by setting the bit or bits that control each pixel. A display
formed in this way is called a bit-mapped display. For instance, in a two-color display,
the color of each pixel is determined by whether a single bit is on or off. If the bit is O,
the pixel is one user-defined color; if the bit is 1, the pixel is another color. For a four-
color display, you build two bit-planes in memory. When the playfield is displayed, the
two bit-planes are overlapped, which means that each pixel is now two bits deep. You
can combine up to five bit-planes in this way. Displays made up of three, four, or five
bit-planes allow a choice of eight, sixteen, or thirty-two colors, respectively.

The color of a pixel is always determined by the binary combination of the bits that
define it. When the system combines bit-planes for display, the combination of bits
formed for each pixel corresponds to the number of a color register. This method of
coloring pixels is called color indirection. The Amiga has thirty-two color registers, each
containing bits defining a user-selected color (from a total of 4,096 possible colors).

Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects
which one of the thirty-two registers to use to display the color of a playfield pixel.

Playfield Hardware 31

Bits from
Planes

E\ Bit-Plane 5 54,321
D\\ Bit-Plane 4 Color Registers

BN\ BitPlane 3 gggg?
D;\\\ Bit-Plane 2 00010

Bit-Plane 1 00011
00100

RRRNEN

> 11000

11001
0 11010
11011
11100
11101
11110
11111

One Pixel

Figure 3-3: How Bit-planes Select a Color

Values in the highest numbered bit-plane have the highest significance in the binary
number. As shown in figure 3-4, the value in each pixel in the highest-numbered bit-
plane forms the leftmost digit of the number. The value in the next highest-numbered
bit-plane forms the next bit, and so on.

32 Playfield Hardware

Sample Data for 4 Pixels

Data in Bit-Plane 5 — Most Significant
Data in Bit-Plane 4
Data in Bit-Plane 3
Data in Bit-Plane 2
Data in Bit-Plane 1 — Least Significant

O=00 =
- O - O
O==00

QO = b =

Value 6 — COLOR6

Value 11 — COLOR11
Value 18 — COLOR18
Value 28 — COLOR28

Figure 3-4: Significance of Bit-Plane Data in Selecting Colors

You also have the choice of defining two separate playfields, each formed from up to
three bit-planes. Each of the two playfields uses a separate set of eight different colors.
This is called dual-playfield mode.

Forming a Basic Playfield

To get you started, this section describes how to directly access hardware registers to
form a single basic playfield that is the same size as the video screen. Here, “same size”
means that the playfield is the same size as the actual display window. This will leave a

small border between the playfield and the edge of the video screen. The playfield usu-
ally does not extend all the way to the edge.

To form a playfield, you need to define these characteristics:

o Height and width of the playfield and size of the display window (that is, how
much of the playfield actually appears on the screen).

o Color of each pixel in the playfield.

Playfield Hardware 33

Horizontal resolution.

Vertical resolution, or interlacing. .

Data fetch and modulo, which tell the system how much data to put on a hor-
izontal line and how to fetch data from memory to the screen.

‘In addition, you need to allocate memory to store the playfield, set pointers to tell the
system where to find the data in memory, and (optionally) write a Copper routine to
handle redisplay of the playfield.

HEIGHT AND WIDTH OF THE PLAYFIELD

To create a playfield that is the same size as the screen, you can use a width of either
320 pixels or 640 pixels, depending upon the resolution you choose. The height is either
200 lines or 400 lines, depending upon whether or not you choose interlaced mode.

BIT-PLANES AND COLOR

You define playfield color by:

1.

2.

Deciding how many colors you need and how you want to color each pixel.
Loading the colors into the color registers.

Allocating memory for the number of bit-planes you need and setting a pointer
to each bit-plane. :

Writing instructions to place a value in each bit in the bit-planes to give you the
correct color.

Table 3-1 shows how many bit-planes to use for the color selection you need.

34 Playfield Hardware

Table 3-1: Colors in a Single Playfield

Number of Number of

Colors Bit-Planes
1-2 1
3-4 2
5-8 3

9-16 4
17 - 32 5

The Color Table

The color table contains 32 registers, and you may load a different color into each of the
registers. Here is a condensed view of the contents of the color table:

Table 3-2: Portion of the Color Table

Register Name Contents Meaning

COLORO 12 bits User-defined color for the
background area and borders.

COLOR1 12 bits User-defined color number 1
(For example, the alternate color
selection for a two-color playfield).

COLOR2 12 bits User-defined color number 2.

COLOR31 12 bits User-defined color number 31.

COLORO is always reserved for the background color. The background color shows in

any area on the display where there is no other object present and is also displayed out-
side the defined display window, in the border area. -

Playfield Hardware 35

If you are using the optional genlock board for video input from a camera, VCR, or laser
disk, the background color will be replaced by the incoming video display.

Twelve bits of color selection allow you to define, for each of the 32 registers, one of

4,096 possible colors, as shown in table 3-3.

Table 3-3: Contents of the Color Registers

Bits

Bits 15-12 Unused
Bits 11 - 8 Red
Bits 7 - 4 Green
Bits 3-0 Blue

Table 3-4 shows some sample color register bit assignments and the resulting colors. At
- the end of the chapter is a more extensive list.

Table 3-4: Sample Color Register Contents

Contents of the Resulting
Color Register Color

$FFF White
$6FE Sky blue
$DB9 Tan
$000 Black

Some sample instructions for loading the color registers are shown below:

LEA COLORO, A0 ;Get address of color register 0 into a0
MOVE.W #$FFF, (A0) ;Load white into color register 0
MOVE.W #$6FE, 2(A0) ;Load sky blue into color register 1

Note that the color registers are write-only. Only by looking at the screen can you find
out the contents of each color register. As a standard practice, then, for these and cer-
tain other write-only registers, you may wish to keep a “back-up” RAM copy. As you
write to the color register itself, you should update this RAM copy. If you do so, you
will always know the value each register contains.

36 Playfield Hardware

Selecting the Number of Bit-Planes

After deciding how many colors you want and how many bit-planes are required to give
you those colors, you tell the system how many bit-planes to use.

You select the number of bit-planes by writing the number into the register BPLCONO
(for Bit Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named
BPU2, BPU1, and BPUO (for “Bit Planes Used”). Table 3-5 shows the values to write to
these bits and how the system assigns bit-plane numbers.

Table 3-5: Setting the Number of Bit-Planes

Number of Name(s) of
Value Bit-Planes Bit-Planes

000 None *

001 1 PLANE 1

010 2 PLANES 1 and 2
011 3 PLANES 1-3
100 4 PLANES 1 -4
101 5 PLANES1-5
110 6 PLANES 1 - 6 **
111 Value not used.

* Shows only a background color; no playfield is visible.

** Sixth bit-plane is used only in dual-playfield mode and in hold-and-
modify mode (described in the section called ““Advanced Topics™).

NOTE

The bits in the BPLCONO register are not independently settable. To set any
one bit, you must reload them all.

Playfield Hardware 37

The following example shows how to tell the system to use two low-resolution bit-planes.

BPLCONO EQU $DFF100 ;BPLCONQO address
MOVE.W #$2200BPLCONO ;Write to it

Because register BPLCONO is used for setting other characteristics of the display and
the bits are not independently settable, the example above also sets other parameters (all
of these parameters are described later in the chapter).

o Hold-and-modify mode is turned off.

o Single-playfield mode is set.

o Composite video color is enabled.

o Genlock audio is disabled.

o Light pen is disabled.

o Interlaced mode is disabled,

o External resynchronization is disabled.

SELECTING HORIZONTAL AND VERTICAL RESOLUTION

Standard home television screens are best suited for low-resolution displays. Low-
resolution mode provides 320 pixels for each horizontal line. High-resolution mono-
chrome and RGB monitors can produce displays in high-resolution mode, which provides
640 pixels for each horizontal line. If you define an object in low-resolution mode and
then display it in high-resolution mode, the object will be only half as wide.

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO:

High-resolution mode — write 1 to bit 15.
Low-resolution mode — write 0 to bit 15.

Note that in high-resolution mode, you can have up to four bit-planes in the playfield
and, therefore, up to 16 colors.

38 Playfield Hardware

Interlacing allows you to double the number of lines appearing on the video screen.
Generally, in non-interlaced mode, 200 lines fill the screen and a playfield of normal size
appears full-sized. In interlaced mode, normally, a maximum of 400 lines fill the screen.
Twice as much data is displayed in the same vertical area as in non-interlaced mode.

In interlaced mode, the scanning circuitry vertically offsets the start of every other field
by half a scan line.

Line 1

-n
Q.
-

Line 1

Line 2
/ Video Display
Line 1 (400 “nes) ’

(Same physical space as used by
a 200 line noninterlaced display.)

-n
(_i.
o
N

Figure 3-5: Interlacing

Even though interlaced mode requires a modest amount of extra work in setting registers
(as you will see later on in this section), it provides fine tuning that is needed for certain
graphics effects. Consider the diagonal line in figure 3-6 as it appears in non-interlaced

and interlaced modes. Interlacing eliminates much of the jaggedness or “staircasing” in
the edges of the line.

Playfield Hardware 39

Non-Interlaced Interlaced

Figure 3-6: Effect of Interlaced Mode on Edges of Objects

When you use the special blitter DMA channel to draw lines or polygons onto an inter-
laced playfield, the playfield is treated as one display, rather than as odd and even fields.
Therefore, you still get the smoother edges provided by interlacing.

To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register
BPLCONO: 4

Interlaced mode — write 1 to bit 2.
Non-interlaced mode — write 0 to bit 2.

As explained above in “Setting the Number of Bit-Planes,” bits in BPLCONO are not
independently settable.

The following example shows how to specify high-resolution and interlaced modes.

BPLCONO EQU $DFF100 ;BPLCONO address
MOVE.W #$A204,BPLCONO ; Write to it

The example above also sets the following parameters that are also controlled through
register BPLCONO:

o High-resolution mode is enabled.

o Two bit-planes are used.

40 Playfield Hardware

o Hold-and-modify mode is disabled.
o Single-playfield mode is enabled.
o Composite video color is enabled.
o Genlock audio is disabled.
o Light pen is disabled.
o Interlaced mode is enabled.
o External resynchronization is disabled.
The amount of memory you need to allocate for each bit-plane depends upon the résolu-

tion modes you have selected, because high-resolution or interlaced playfields contain
more data and require larger bit-planes:.

ALLOCATING MEMORY FOR BIT-PLANES

After you set the number of bit-planes and specify resolution modes, you are ready to
allocate memory. A bit-plane consists of an end-to-end sequence of words at consecutive
memory locations. To allocate memory, you set the registers that point to the starting
memory address of each bit-plane you are using. The starting address is the memory
word that contains the bits of the upper left-hand corner of the bit-plane.

Table 3-6 shows how much memory is needed for basic playfields. You may need to bal-

ance your color and resolution requirements against the amount of available memory you
have.

Playfield Hardware 41

Table 3-6: Playfield Memory Requirements

Number of Bytes

Picture Size Modes per Bit-Plane

320 X 200 Low-resolution, 8,000
non-interlaced

320 X 400 Low-resolution, 16,000
interlaced

640 X 200 High-resolution, 16,000
non-interlaced

640 X 400 High-resolution, 32,000
interlaced

A normal low-resolution, non-interlaced display has 320 pixels across each display line
and a total of 200 display lines. Each line of the bit-plane for such a display requires 40
bytes (320 bits divided by 8 bits per byte = 40).

A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000
bytes of memory area. The memory for each bit-plane must be continuous, so you need
to have two 8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte
memory area organized as 200 lines of 40 bytes each, providing 1 bit for each pixel posi-
tion in the display plane.

42 Playfield Hardware

Mem. Location N

Mem. Location N+38

Mem. Location N+40

Mem. Location N+78

Mem. Location N+7960

Mem. Location N+7998

Figure 3-7: Memory Organization for a Basic Bit-Plane

Access to bit-planes in memory is provided by two address registers, BPLxPTH and
BPLxPTL, for each bit-plane (12 registers in all). The “x” position in the name holds
the bit-plane number; for example BPL1PTH and BPL1PTL hold the starting address of
PLANE 1. As usual, pairs of registers with names ending in PTH and PTL contain 19-
bit addresses. 68000 programmers may treat these as one 32-bit address and write to
them as one long word. You write to the high-order word, which is the register whose

name ends in “PTH.”

The example below shows how to set the bit-plane pointers. Assuming two bit-planes,
one at $21000 and the other at $25000, the processor sets BPLIPT to $21000 and
BPL2PT to $25000. Note that this is usually the Copper’s task.

BPLIPTH EQU
BPLIPTL EQU
BPL2PTH EQU
BPL2PTL EQU

MOVE.L $21000,BPL1PTH
MOVE.L $25000,BPL2PTH

$DFFOEQ
$DFFOE2
$DFFOE4
$DFFOE6

;High three bits of bit-plane 1 pointer
;Low fifteen bits
;High three bits of bit-plane 2 pointer
;Low fifteen bits

; Write bit-plane 1 pointer
; Write bit-plane 2 pointer

Playfield Hardware 43

Note that the memory requirements given here are for the playfield only. You may need
to allocate additional memory for other parts of the display — sprites, audio, animation
— and for your application programs. Memory allocation for other parts of the display
is discussed in the chapters describing those topics.

CODING THE BIT-PLANES FOR CORRECT COLORING

After you have specified the number of bit-planes and set the bit-plane pointers, you can
actually write the color register codes into the bit-planes.

A One- or Two-Color Playfield

For a one-color playfield, all you need do is write Os in all the bits of the single bit-plane
as shown in the example below. This code fills a low-resolution bit-plane with the back-
ground color (COLORO00) by writing all Os into its memory area. The bit-plane starts at
$21000 and is 8,000 bytes long.

LEA $21000,A0 ;Point at bit-plane

MOVE.W #2000,D0 s Write 2000 longwords = 8000 bytes
LOOP: MOVE.L #0,(A0)+ ; Write out a zero

SUBQ.W #1,D0 _ ;Decrement counter

BNE LOOP ;Loop until bit-plane is filled with 0s

For a two-color playfield, you define a bit-plane that has Os where you want the back-
ground color and 1s where you want the color in register 1. The following example code

is identical to the last example, except the bit-plane is filled with $FFOOFFOQ0 instead of
all 0’s. This will produce two colors.

LEA $21000,A0 ;Point at bit-plane

MOVE.W #2000,D0 ; Write 2000 longwords = 8000 bytes
LOOP: MOVEL #$FFOOFF00,(A0)+ ;Write out $FFO0FF00

SUBQ.W #1,D0 ;Decrement counter

BNE LOOP ;Loop until bit-plane s full

44 Playfield Hardware

A Playfield of Three or More Colors

For three or more colors, you need more than one bit-plane. The task here is to define
each bit-plane in such a way that when they are combined for display, each pixel con-
tains the correct combination of bits. This is a little more complicated than a playfield
of one bit-plane. The following examples show a four-color playfield, but the basic idea
and procedures are the same for playfields containing up to 32 colors.

Figure 3-8 shows two bit-planes forming a four-color playfield:

Results in a display
similar to this:

Image in
Bit-Plane 2

Image in
Bit-Plane

COO0O=-=00O0
CoOO0O==000
OO0 ==-000
- - =-loofco o
= o wloojlooc o

00
00
00
11
11
00
00
00

COO0O = =2 000
OCOO0O-—-=000
OO0 ==20 000

—md w2 O O] = -

CO00O=2=000
OO0 = =000

- =2 O Ol -
COO0O==-2000

0
0
0
1
1
0
0
0

Color 00
{background)

\

Color 3

Figure 3-8: Combining Bit-planes

You place the correct 1s and Os in both bit-planes to give each pixel in the picture above
the correct color.

In a single playfield you can combine up to five bit-planes in this way. Using five bit-
planes allows a choice of 32 different colors for any single pixel. The playfield color selec-
tion charts at the end of this chapter summarize the bit combinations for playfields
made from four and five bit-planes.

Playfield Hardware 45

DEFINING THE SIZE OF THE DISPLAY WINDOW

After you have completely defined the playfield, you need to define the size of the
display window, which is the actual size of the on-screen display. Adjustment of display
window size affects the entire display area, including the border and the sprites, not just
the playfield. You cannot display objects outside of the defined display window. Also,
the size of the border around the playfield depends on the size of the display window.

The basic playfield described in this section is the same size as the screen display area
and also the same size as the display window. This is not always the case; often the
display window is smaller than the actual “big picture” of the playfield as defined in
memory (the raster). A display window that is smaller than the playfield allows you to
display some segment of a large playfield or scroll the playfield through the window.
You can also define display windows larger than the basic playfield. These larger
playfields and different-sized display windows are described in the section below called
*Bit-Planes and Display Windows of All Sizes.”

You define the size of the display window by specifying the vertical and horizontal posi-
tions at which the window starts and stops and writing these positions to the display
window registers. The resolution of vertical start and stop is one scan line. The resolu-
tion of horizontal start and stop is one low-resolution pixel. Each position on the screen
defines the horizontal and vertical position of some pixel, and this position is specified by
the x and y coordinates of the pixel. This document shows the x and y coordinates in
this form: (x,y). Although the coordinates begin at (0,0) in the upper left-hand corner of
the screen, the first horizontal position normally used is $81 and the first vertical posi-
tion is $2C. The hardware allows you to specify a starting position before ($81,$2C),
but part of the display may not be visible. The difference between the absolute starting
position of (0,0) and the normal starting position of ($81,$2C) is the result of the way
many video display monitors are designed. To overcome the distortion that can occur at
the extreme edges of the screen, the scanning beam sweeps over a larger area than the
front face of the screen can display. A starting position of ($81,$2C) centers a normal
size display, leaving a border of eight low-resolution pixels around the display window.
Figure 3-9 shows the relationship between the normal display window, the visible screen
~ area, and the area actually covered by the scanning beam.

46 Playfield Hardware

(0,0) /-($81, $2C) . b4
/
\—Visible screen boundaries

Cy Y
7y N

- 320

A

Y

4
/

\—display window —/

Starting and stopping positions

Figure 3-9: Positioning the On-screen Display

Setting the Display Window Starting Position

A horizontal starting position of approximately $81 and a vertical starting position of
approximately $2C centers the display on most standard television screens. If you select
high-resolution mode (640 pixels horizontally) or interlaced mode (400 lines) the starting
position does not change. The starting position is always interpreted in low-resolution,
non-interlaced mode. In other words, you select a starting position that represents the
correct coordinates in low-resolution, non-interlaced mode.

The register DIWSTRT (for “Display Window Start”) controls the display window start-
ing position. This register contains both the horizontal and vertical components of the
display window starting positions, known respectively as HSTART and VSTART. The
following example sets DIWSTRT for a basic playfield. You write $2C for VSTART and
$81 for HSTART.

Playfield Hardware 47

DIWSTRT EQU = $DFFOSE ;Display window start

; register address

MOVE.W #$2C81,DIWSTRT ; Write it out

Setting the Display Window Stopping Position

You also need to set the display window stopping position, which is the lower right-hand
corner of the display window. If you select high-resolution or interlaced mode, the stop-
ping position does not change. Like the starting position, it is interpreted in low-
resolution, non-interlaced mode.

The register DIWSTOP (for Display Window Stop) controls the display window stopping
position. This register contains both the horizontal and vertical components of the
display window stopping positions, known respectively as HSTOP and VSTOP. The
instructions below show how to set HSTOP and VSTOP for the basic playfield, assum-
ing a starting position of ($81,$2C). Note that the HSTOP value you write is the actual
value minus 256 ($100). The HSTOP position is restricted to the right-hand side of the
screen. The normal HSTOP value is ($1C1) but is written as ($C1).

The VSTOP position is restricted to the lower half of the screen. This is accomplished
in the hardware by forcing the MSB of the stop position to be the complement of the
next MSB. This allows for a VSTOP position greater than 256 ($100) using only 8 bits.
Normally, the VSTOP is set to ($F4).

The normal DIWSTRT is ($2C81). The normal DIWSTOP is ($F4C1).

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical posi-
tion and $C1 for the horizontal position.

DIWSTOP EQU $DFF090 ;Display window stop
; register address

MOVE.W #$F4C1,DIWSTOP ;Write it out

48 Playfield Hardware

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA

After defining the size and position of the display window, you need to give the system
the on-screen location for data fetched from memory. To do this, you describe the hor-
izontal positions where each line starts and stops and write these positions to the data-
fetch registers. The data-fetch registers have a four-pixel resolution (unlike the display
window registers, which have a one-pixel resolution). Each position specified is four pix-
els from the last one. Pixel 0 is position 0; pixel 4 is position 1, and so on.

The data-fetch start and display window starting positions interact with each other. It
is recommended that data-fetch start values be restricted to a programming resolution of
16 pixels (8 clocks in low-resolution mode, 4 clocks in high-resolution mode). The
hardware requires some time after the first data fetch before it can actually display the
data. As a result, there is a difference between the value of window start and data-fetch
start. In low-resolution mode the difference is 8.5 clocks; in high-resolution mode the
difference is 4.5 clocks.

The normal low-resolution DDFSTRT is ($0038). The normal high-resolution

DDFSTRT is (3003C). Recall that the hardware resolution of display window start and
stop is twice the hardware resolution of data fetch: '

($81/2 - 8.5) = ($38)
($81/2 - 4.5) = ($30)

The relationship between data-fetch start and stop is

DDFSTRT = DDFSTOP - (8*(word count - 1) for low resolution
DDFSTRT = DDFSTOP - (4%(word count - 2) for high resolution

The normal low-resolution DDFSTOP is ($00D0). The normal high-resolution
DDFSTOP is ($00D4).

The following example sets data-fetch start to $0038 and data-fetch stop to $00DO for a
basic playfield.

DDFSTRT EQU $DFF092
DDFSTOP EQU $DFF094

MOVE.W' #8$0038,DDFSTRT ;Write to DDFSTRT
MOVEW #800D0,DDFSTOP ;Write to DDFSTOP

Playfield Hardware 49

You also need to tell the system exactly which bytes in memory belong on each horizon-
tal line of the display. To do this, you specify the modulo value. Modulo refers to the
number of bytes in memory between the last word on one horizontal line and the begin-
ning of the first word on the next line. Thus, the modulo enables the system to convert
bit-plane data stored in linear form (each data byte at a sequentially increasing memory
address) into rectangular form (one “line” of sequential data followed by another line).
For the basic playfield, where the playfield in memory is the same size as the display
window, the modulo is zero because the memory area contains exactly the same number
of bytes as you want to display on the screen. Figures 3-10 and 3-11 show the basic
bit-plane layout in memory and how to make sure the correct data is retrieved.

The bit-plane address pointers (BPLxPTH and BPLXPTL) are used by the system to
fetch the data to the screen. These pointers are dynamic; once the data fetch begins,
the pointers are continuously incremented to point to the next word to be fetched (data
is fetched two bytes at a time). When the end-of-line condition is reached (defined by
the data-fetch register, DDFSTOP) the modulo is added to the bit-plane pointers,
adjusting the pointer to the first word to be fetched for the next horizontal line.

Data for Line 1:

Location: START START+2 STARTH4 ces START+38
Leftmost Next Word Next Word Last Display
Display Word Word

Screen data fetch stops (DDFSTOP) for
each horizontal line after the last word
on the line has been fetched.

Figure 3-10: Data Fetched for the First Line When Modulo = 0

After the first line is fetched, the bit-plane pointers BPLxPTH é,nd BPLXxPTL contain
the value START+40. The modulo (in this case, 0) is added to the current value of the
pointer, so when the pointer begins the data fetch for the next line, it fetches the data

you want on that line. The data for the next line begins at memory location
START+40.

50 Playfield Hardware

Data for Line 2:

Location: START+H40 STARTH42 STARTH4 ... START+78
Leftmost Next Word Next Word Last Display
Display Word Word

Figure 3-11: Data Fetched for the Second Line When Modulo = 0
Note that the pointers always contain an even number, because data is fetched from the
display a word at a time.

There are two modulo registers—BPLIMOD for the odd-numbered bit-planes and
BPL2MOD for the even-numbered bit-planes.

The following example sets the modulo to O for a low-resolution playfield with one bit-
plane. The bit-plane is odd-numbered.

BPLIMOD EQU $DFF108 ;Modulo for odd bit-planes

MOVE.W #0,BPLIMOD ;Set modulo to 0

Data Fetch in High-resolution Mode

When you are using high-resolution mode to display the basic playfield, you need to
fetch 80 bytes for each line, instead of 40.

Modulo in Interlaced Mode

For interlaced mode, you must redefine the modulo, because interlaced mode uses two
separate scannings of the video screen for a single display of the playfield. During the
first scanning, the odd-numbered lines are fetched to the screen; and during the second
scanning, the even-numbered lines are fetched.

Playfield Hardware 51

The bit-planes for a full-screen-sized, interlaced display are 400, rather than 200, lines
long. Assuming that the playfield in memory is the normal 320 pixels wide, data for the
interlaced picture begins at the following locations (these are all byte addresses):

Linel START
Line2 START+40
Line3 START+80
Line4 START+120

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For
odd fields, the bit-plane pointers begin at START. For even fields, the bit-plane
pointers begin at START+40.

You can use the Copper to handle resetting of the bit-plane pointers for interlaced
displays.

DISPLAYING AND REDISPLAYING THE PLAYFIELD

You start playfield display by making certain that the bit-plane pointers are set and
bit-plane DMA is turned on. You turn on bit-plane DMA by writing a 1 to bit BPLEN
in the DMACON (for DMA control) register. See chapter 7, ‘“System Control
Hardware,” for instructions on setting this register.

Each time the playfield is redisplayed, you have to reset the bit-plane pointers. Reset-
ting is necessary because the pointers have been incremented to point to each successive
word in memory and must be repointed to the first word for the next display. You write
Copper instructions to handle the redisplay or perform this operation as part of a verti-
cal blanking task.

ENABLING THE COLOR DISPLAY

To enable color rather than black and white display, you need to set bit 9 in BPLCONO.
Doing so enables the color burst signal on composite video; it does not affect RGB video.

52 Playfield Hardware

SUMMARY

The steps for defining a basic playfield are summarized below:

1. Define Playfield Characteristics

a.

Specify height in lines:

o 200 maximum for non-interlaced mode.

o 400 maximum for interlaced mode.
Specify width in pixels:

o 320 maximum for low-resolution mode.

o 640 maximum for high-resolution mode.
Specify color for each pixel:

o Load desired colors in color table registers.

o Define color of each pixel in terms of the binary value that points at the
desired color register.

o Build bit-planes.
o Set bit-plane registers:
* Bits 12-14 in BPLCONO - number of bit-planes (BPU2 - BPUO).

* BPLxPTH - pointer to bit-plane starting position in memory (written as
a long word).

Specify resolution:
o Low resolution:
* 320 pixels in each horizontal line.

* Clear bit 15 in register BPLCONO (HIRES).

Playfield Hardware 53

o High resolution:

* 640 pixels in each horizontal line.

* Set bit 15 in register BPLCONO (HIRES).

e. Specify interlaced or non-interlaced mode:

o Interlaced mode:

* 400 vertical lines.

* Set bit 2 in register BPLCONO (LACE).
o Non-interlaced mode:

* 200 vertical lines.

* Clear bit 2 ianPLCONO (LACE).

2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the follow-
ing formula:

Bytes per line * lines in playfield * number of bit-planes

3. Define Size of Display Window.
o Write start position of display window in DIWSTRT:
* Horizontal position in bits 0 through 7 (low-order bits).
* Vertical position in bits 8 through 15 (high-order bits).
o Write stop position of display window in DIWSTOP:
* Horizontal position in bits 0 through 7.
* Vertical position in bits 8 through 15.
4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP:

o For DDFSTRT, use the horizontal position as shown in “Setting the Display
Window Starting Position.”

o For DDFSTOP, use the horizontal position as shown in “Setting the Display
Window Stopping Position.”

54 Playfield Hardware

5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for
non-interlaced, 40 for interlaced.

6. Write Copper Instructions To Handle Redisplay.

7. Enable Color Display. Set bit 9 in BPLCONO to enable the color display on a
composite video monitor. RGB video is not affected.

EXAMPLES OF FORMING BASIC PLAYFIELDS

The following examples show how to set the registers and write the coprocessor lists for
two different playfields.

The first example sets up a 320 x 200 playfield with one bit-plane, which is located at
$21000. Also, a Copper list is set up at $20000.

CUSTOM EQU $DFF000
BPLCONO EQU $100
BPLCON1 EQU $102
BPLCON2 EQU $104
BPLIMOD EQU $108
DDFSTRT EQU $092
DDFSTOP EQU $094
DIWSTRT EQU $0SE
DIWSTOP EQU $090
VPOSR EQU $004
COLOR00 EQU $180
COLORO1 EQU $182
COLOR02 EQU $184
COLOR03 EQU $186
DMACON EQU $096

COPILCH EQU $080 ; Copper location register 1

5 (high three bits)
LEA CUSTOM,A0 ;A0 points at custom chips
MOVE.W #$1200,BPLCONO(AO) ;One bit-plane, enable composite color
MOVE.W #0,BPLCON1(A0) ;Set horizontal scroll value to 0
MOVE.W #0,BPL1IMOD(AO0) ;9et modulo to 0 for all odd bit-planes

MOVEW #$0038, DDFSTRT(AQ) ;Set data-fetch start to $38
MOVE.W #$00D0,DDFSTOP(AQ) ;Set data-fetch stop to $D0
MOVE.W #$2C81,DIWSTRT(AQ) ;Set DIWSTRT to $2C81
MOVE.W #$F4C1,DIWSTOP(AQ) ;Set DIWSTOP to $F4C1
MOVE.W #$0F00,COLORO0(AO) ;Set background color to red
MOVE.W #$0FF0,COLORO1(A0) ;Set color register 1 to yellow

Playfield Hardware 55

)
s Fill bit-plane with $FF00FF00 to produce stripes

’

‘MOVE.L #$21000,A1 :Point at beginning of bit-plane

MOVE.L #$FFOOFF00,D0 : We will write $FF00FF00 long words

MOVE.W #2000,D1 ;2000 long words = 8000 bytes
LOOP: MOVE.L DO,(A1)+ :Write a long word

SUBQ.W #1,D1 ;Decrement counter

BNE LOOP :Loop until bit-plane is filled

)
; Set up Copper list at $20000

y

MOVE.L #$20000,A1 ;Point at Copper list destination

LEA COPPERL,A2 :Point A2 at Copper list data
CLOOP: MOVE.L (A2),(A)+ ;Move a word

CMPI.L #$FFFFFFFE,(A2)+ ;Check for last longword of Copper list

BNE CLOOP :Loop until entire copper list is moved

; _
; Point Copper at Copper list

’

MOVE.L #$20000,COP1LCH(AQ) ;Write to Copper location register
MOVE.W COPJMP1(A0),DO :Force copper to $20000

. Start DMA

)
MOVE.W #$8380,DMACON(A0) ;Enable bit-plane and Copper DMA
BRA ;Go do next task

; This is the data for the Copper list.

COPPERL:

DC.W $00E0,$0002 :Move $0002 to address $0EQ
. (BPL1PTH)

DC.W $00E2,$1000 ;Move $1000 to address $0E2
. (BPLIPTL)

DC.W $FFFF $FFFE sEnd of Copper list

The second example sets up a high-resolution, interlaced display with one bit-plane. The
equates are the same as the previous example so they aren’t repeated here.

LEA CUSTOM,A0 ;Address of custom chips

56 Playfield Hardware

MOVE.W #89204 BPLCONO(AO0)
MOVE.W #0,BPLCON1(A0)
MOVE.W #380,BPLIMOD(A0)
MOVE.W #380,BPL2MOD(A0)
MOVE.W #8$003C,DDFSTRT(A0)
MOVE.W #$00D4,DDFSTOP(A0)
MOVE.W #$2C81,DIWSTRT(A0)
MOVE.W #$F4C1,DIWSTOP(A0)
; Set up color registers

MOVE.W #8$000F,COLORO00(A0)
MOVE.W #$0FFF,COLORO01(A0)

’

; Set up bit-plane at $20000

?
LEA $20000,A1
LEA CHARLIST,A2
MOVE.W #400,D1
MOVE.W #20,D0

L1: '

MOVEL (A2)(Al)+

SUBQ.W #1,D0

BNE L1

MOVE.W #20,D0
ADDQL #4,A2
CMPILL #$FFFFFFFF,(A2)
BNE L2
LEA CHARLIST,A2
L2:
SUBQ.W #1,D1
BNE L1

; Start DMA

?

MOVE.W #$8300,DMACON(A0)

;Hires, one bit-plane, interlaced
;:Horizontal scroll value = 0
:Modulo = 80 for odd bit-planes
;Ditto for even bit-planes

;Set data-fetch start for hires
;Set data-fetch stop

;Set display window start

:Set display window stop

;Background color = blue
;Foreground color = white

;Point A1 at bit-plane

;A2 points at character data
; Write 400 lines of data

s Write 20 long words per line

; Write a long word

;Decrement counter

;Loop until line is full

;Reset long word counter

;Point at next word in char list

;End of char list?

:Yes, reset A2 to beginning of list

;Decrement line counter
;Loop until all lines are full

;Enable bit-plane DMA only,
; no Copper

Because this example has no Copper list, it sits in a loop waiting for the vertical blank-
ing interval. When it comes, you check the LOF (“long frame”) bit in VPOSR. If
LOF = 0, this is a short frame and the bit-plane pointers are set to point to $20050. If
LOF = 1, then this is a long frame and the bit-plane pointers are set to point to $20000.
This keeps the long and short frames in the right relationship to each other.

Playfield Hardware 57

VLOOP: MOVEW INTREQR(A0),D0 ;Read interrupt requests

AND.W #%$0020,D0 iMask off all but vertical blank
BEQ VLOOP ;Loop until vertical blank comes
MOVE.W #$0020,INTREQ(A0) ;Reset vertical interrupt
MOVE.W VPOSR(A0),DO ;Read LOF bit into DO bit 15
BPL VL1 JIf LOF = 0, jump

MOVE.L #$20000,BPL1IPTH(AQ) ;LOF = 1, point to $20000
BRA VLOOP ;Back to top

MOVE.L #$20050,BPLIPTH(AO) ;LOF = 0, point to $20050
BRA VLOOP ;Back to top
; Character list

’

DCL $18F C3DF0,$3C6666D8,$3C66C0CC,$667CCOCC
DC.L $7E66C0CC,$C36666D8,$C3F C3DF0,$00000000
DC.L $FFFFFFFF

Forming a Dual-playfield Display

For more flexibility in designing your background display, you can specify two playfields
instead of one. In dual-playfield mode, one playfield is displayed directly in front of the
other. For example, a computer game display might have some action going on in one
playfield in the background, while the other playfield is showing a control panel in the
foreground. You can then change either the foreground or the background without hav-
ing to redesign the entire display. You can also move the two playfields independently.

A dual-playfield display is similar to a single-playfield display, differing only in these
aspects:

o Each playfield in a dual display is formed from one, two or three bit-planes.

o The colors in each playfield (up to seven plus transparent) are taken from
different sets of color registers. .

o You must set a bit to activate dual-playfield mode.

58 Playfield Hardware

Figure 3-12 shows a dual-playfield display.

Playfield 1 (1, 2, or 3 bit-planes)™®

Playfield 2 (1, 2, or 3 bit-planes)*

317
HEADING

7%
SPEED

o000 | [123 || 52 |

FUEL MISSILES OlL

IS

Both playfields appear on-screen,
combined to form the complete
display.

The background

317

SPEED HEADING
errsrovs R s

e s
|
S

b

color shows
through where
there are
transparent
sections of
both
playfields.

0000

FUEL MISSILES

Figure 3-12: A Dual-playfield Display

In figure 3-12, one of the colors in each playfield is “transparent” (color O in playfield 1
and color 8 in playfield 2). You can use transparency to allow selected features of the

background playfield to show through.

Playfield Hardware 59

In dual-playfield mode, each playfield is formed from up to three bit-planes. Color regis-
ters 0 through 7 are assigned to playfield 1, depending upon how many bit-planes you
use. Color registers 8 through 15 are assigned to playfield 2.

Bit-Plane Assignment in Dual-playfield Mode

The three odd-numbered bit-planes (1, 3, and 5) are grouped together by the hardware
and may be used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and
6) are grouped together and may be used in playfield 2. The bit-planes are assigned
alternately to each playfield, as shown in figure 3-13. Note that in high-resolution mode,
you can have up to two bit-planes in each playfield — bit-planes 1 and 3 in playfield 1
and bit-planes 2 and 4 in playfield 2.

60 Playfield Hardware

Number of

Bit-Planes
“Turned on” Playfield 1* Playfield 2*
0 None None

Jo000L
JooUL

*NOTE: Either playfield may be placed “in front of” or “behind” the other using the
“swap=bit.”

Figure 3-13: How Bit-Planes Are Assigned to Dual Playfields

Playfield Hardware 61

COLOR REGISTERS IN DUAL-PLAYFIELD MODE

When you are using dual playfields, the hardware interprets color numbers for playfield
1 from the bit combinations of bit-planes 1, 3, and 5. Bits from PLANE 5 have the
highest significance and form the most significant digit of the color register number.
Bits from PLANE 0 have the lowest significance. These bit combinations select the first
eight color registers from the color palette as shown in table 3-7.

Table 3-7: Playfield 1 Color Registers — Low-resolution Mode

PLAYFIELD 1
Bit Color
Combination Selected
000 Transparent mode
001 COLOR1
010 COLOR2
011 COLOR3
100 COLORA4
101 COLOR5
110 COLORG6
111 COLOR7

The hardware interprets color numbers for playfield 2 from the bit combinations of bit-
planes 2, 4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE
2 have the lowest significance. These bit combinations select the color registers from the
second eight colors in the color table as shown in table 3-8.

62 Playfield Hardware

Table 3-8: Playfield 2 Color Registers — Low-resolution Mode

PLAYFIELD 2

Bit Cclor
Combination Selected

000 Transparent mode

001 COLORSY

010 COLORI10

011 COLOR11

100 COLOR12

101 COLORI13 t

110 COLOR14

111 COLOR15

Combination 000 selects transparent mode, to show the color of whatever object (the
other playfield, a sprite, or the background color) may be “behind” the playfield.

Table 3-9 shows the color registers for high-resolution, dual-playfield mode.

Table 3-9: Playfields 1 and 2 Color Registers — High-resolution Mode

PLAYFIELD 1
Bit Color
Combination Selected
00 ‘Transparent mode
01 COLOR1
10 COLOR2
11 COLOR3
PLAYFIELD 2
Bit Color
Combination Selected
00 Transparent mode
01 COLORY
10 COLOR10
11 COLORI11

Playfield Hardware 63

DUAL-PLAYFIELD PRIORITY AND CONTROL

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of
the other, although playfield 1 normally has priority. The bit known as PF2PRI (bit 6)
in register BPLCON2 is used to control priority. When PF2PRI = 1, playfield 2 has
priority over playfield 1. When PF2PRI = 0, playfield 1 has priority.

You can also control the relative priority of playfields and sprites. Chapter 7, “System
Control Hardware,” shows you how to control the priority of these objects.

You can control the two playfields separately as follows:

o They can have different-sized representations in memory, and different portions
of each one can be selected for display. ,

o They can be scrolled separately.
NOTE:

You must take special care when scrolling one playfield and holding the other
stationary. When you are scrolling low-resolution playfields, you must fetch one
word more than the width of the playfield you are trying to scroll (two words
more in high-resolution mode) in order to provide some data to display when the
actual scrolling takes place. Only one data-fetch start register and one data-
fetch stop register are available, and these are shared by both playfields. If you
want to scroll one playfield and hold the other, you must adjust the data-fetch
start and data-fetch stop to handle the playfield being scrolled. Then, you must
adjust the modulo and the bit-plane pointers of the playfield that is not being
scrolled to maintain its position on the display. In low-resolution mode, you
adjust the pointers by -2 and the modulo by -2. In high-resolution mode, you
adjust the pointers by -4 and the modulo by -4.

ACTIVATING DUAL-PLAYFIELD MODE

Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCONO selects
dual-playfield mode. Selecting dual-playfield mode changes both the way the hardware
groups the bit-planes for color interpretation —all odd-numbered bit-planes are grouped

together and all even-numbered bit-planes are grouped together—and the way hardware
can move the bit-planes on the screen.

64 Playfield Hardware

SUMMARY

The steps for defining dual playfields are almost the same as those for defining the basic
playfield. Only in the following steps does the dual-playfield creation process differ from
that used for the basic playfield:

o Loading colors into the registers. Keep in mind that color registers 0-7 are
used by playfield 1 and registers 8 through 15 are used by playfield 2 (if there
are three bit-planes in each playfield).

o Building bit-planes. Recall that playfield 1 is formed from PLANES 1, 3, and
5 and playfield 2 from PLANES 2, 4, and 6.

o Setting the modulo registers. Write the modulo to both BPLIMOD and
BPL2MOD as you will be using both odd- and even-numbered bit-planes.

These steps are added:

o Defining priority. If you want playfieid 2 to have priority, set bit 6 (PF2PRI)
in BPLCON2 to 1.

o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1.

Bit-planes and Display Windows of All Sizes

You have seen how to form single and dual playfields in which the playfield in memory
is the same size as the display window. This section shows you how to define and use a
playfield whose big picture in memory is larger than the display window, how to define
display windows that are larger or smaller than the normal playfield size, and how to
move the display window in the big picture.

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW

If you design a memory picture larger than the display window, you must choose which

part of it to display. Displaying a portion of a larger playfield differs in the following
ways from displaying the basic playfields described up to now:

Playfield Hardware 65

o If the big picture in memory is larger than the display window, you must
respecify the modulos. The modulo must be some value other than 0.

o You must allocate more memory for the larger memory picture.

Specifying the Modulo

For a memory picture wider than the display window, you need to respecify the modulo
so that the correct data words are fetched for each line of the display. As an example,
assume the display window is the standard 320 pixels wide, so 40 bytes are to be
displayed on each line. The big picture in memory, however, is exactly twice as wide as
the display window, or 80 bytes wide. Also, assume that you wish to display the left
half of the big picture. Figure 3-14 shows the relationship between the big picture and
the picture to be displayed.

START ' START+78

|
Width of the Bit-Plane Defined in RAM

“Width of defined
screen on which
bit-plane data is
to appear

Figure 3-14: Memory Picture Larger than the Display

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in
figure 3-15.

66 Playfield Hardware

Data for Line 1:

Location: START START+2 START+H4 ces START+38
Leftmost Next Word Next Word Last Display
Display Word Word

Screen data fetch stops (DDFSTOP) for
each horizontal line after the last word
on the line has been fetched.

Figure 3-15: Data Fetch for the First Line Wher Modulo = 40

At this point, BPLxPTH and BPLXPTL contain the value START+40. The modulo,
which is 40, is added to the current value of the pointer so that when it begins the data
fetch for the next line, it fetches the data that you intend for that line. The data fetch
for line 2 is shown in figure 3-16.

Data for Line 2:

Location: START+80 START+82 START+84 ... START+118
Leftmost Next Word Next Word ' Last Display
Display Word Word

Figure 3-16: Data Fetch for the Second Line When Modulo = 40

To display the right half of the big picture, you set up a vertical blanking routine to
start the bit-plane pointers at location START+40 rather than START with the modulo
remaining at 40. The data layout is shown in figures 3-17 and 3-18.

Playfield Hardware 67

Data for Line 2:

Location: START+40 START+42 STARTH44 ... START+78
Leftmost Next Word Next Word Last Display
Display Word Word

Figure 3-17: Data Layout for First Line—Right Half of Big Picture

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to
the pointers so that when they begin the data fetch for the second line, the correct data
is fetched.

Data for Line 2:

Location: START+120 START+122 START+124 ... START+158
Leftmost Next Word Next Word Last Display
Display Word Word

Figure 3-18: Data Layout for Second Line—Right Half of Big Picture

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low-
resolution mode. For a normal-sized display, you fetch 80 bytes for each horizontal line
instead of 40.

Specifying the Data Fetch

The data-fetch registers specify the beginning and end positions for data placement on
each horizontal line of the display. You specify data fetch in the same way as shown in
the section called “Forming a Basic Playfield.”

68 Playfield Hardware

Memory Allocation

For larger memory pictures, you need to allocate more memory. Here is a formula for
calculating memory requirements in general:

bytes per line * lines in playfield * # of bit-planes

Thus, if the wide playfield described in this section is formed from two bit-planes, it
requires:

80 * 200 * 2 = 32,000 bytes of memory

Recall that this is the memory requirement for the playfield alone. You need more
memory for any sprites, animation, audio, or application programs you are using.

Selecting the Display Window Starting Position

The display window starting position is the horizontal and vertical coordinates of the
upper left-hand corner of the display window. One register, DIWSTRT, holds both the
horizontal and vertical coordinates, known as HSTART and VSTART. The eight bits
allocated to HSTART are assigned to the first 256 positions, counting from the leftmost

possible position. Thus, you can start the display window at any pixel position within
this range. '

Playfield Hardware 69

FULL SCREEN AREA
0 ' 255 361

HSTART of DISPLAY
WINDOW occurs in
this region.

Figure 3-19: Display Window Horizontal Starting Position

The eight bits allocated to VSTART are assigned to the first 256 positions counting
down from the top of the display.

FULL SCREEN AREA

0
VSTART of DISPLAY WINDOW
occurs in this region.
—— 255
{NTSC) 262

Figure 3-20: Display Window Vertical Starting Position

Recall that you select the values for the starting position as if the display were in low-
resolution, non-interlaced mode. Keep in mind, though, that for interlaced mode the

display window should be an even number of lines in height to allow for equal-sized odd
and even fields.

70 Playfield Hardware

To set the display window starting position, write the value for HSTART into bits 0
through 7 and the value for VSTART into bits 8 through 15 of DIWSTRT.

Selecting the Stopping Position

The stopping position for the display window is the horizontal and vertical coordinates
of the lower right-hand corner of the display window. One register, DIWSTOP, contains
both coordinates, known as HSTOP and VSTOP.

See the notes in the “Forming a Basic Playfield” section for instructions on setting these
registers.

FULL SCREEN AREA
0 255 361

HSTOP of DISPLAY
WINDOW occurs in
this region.

Figure 3-21: Display Window Horizontal Stopping Position

Select a value that represents the correct position in low-resolution, non-interlaced mode.

Playfield Hardware 71

FULL SCREEN AREA

0
T 128
VSTOP of DISPLAY
WINDOW occurs in
this region.
{NTSC) ———— 262

Figure 3-22: Display Window Vertical Stopping Position

To set the display window stopping position, write HSTOP into bits O through 7 and
VSTOP into bits 8 through 15 of DIWSTOP.

MAXIMUM DISPLAY WINDOW SIZE

The maximum size of a playfield display is determined by the maximum number of lines
and the maximum number of columns. Vertically, the restrictions are simple. No data
can be displayed in the vertical blanking area, which ranges from line 0 through line 19

(20 lines total). This leaves 242 lines of displayable screen video (interlaced mode dou-
bles this to 484).

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost
limit to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a
maximum of 25 words fetched in low-resolution mode. In high-resolution mode the max-
imum here is 49 words, because the rightmost limit remains ($D8) and only one word is
fetched at this limit. However, horizontal blanking actually limits the displayable video
to 376 low-resolution pixels (23.5 words). In addition, it should be noted that using a
data-fetch start earlier than ($38) will disable some sprites.

72 Playfield Hardware

Moving (Scrolling) Playfields

If you want a background display that moves, you can design a playfield larger than the
display window and scroll it. If you are using dual playfields, you can scroll them
separately.

In vertical scrolling, the playfield appears to move smoothly up or down on the screen.
All you need do for vertical scrolling is progressively increase or decrease the starting
address for the bit-plane pointers by the size of a horizontal line in the playfield. This
has the effect of showing a lower or higher part of the picture each field time.

In horizontal scrolling the playfield appears to move from right to left or left to right on
the screen. Horizontal scrolling works differently from vertical scrolling — you must

.arrange to fetch one more word of data for each display line and delay the display of
this data.

For either type of scrolling, resetting of pointers or data-fetch registers can be handled
by the Copper during the vertical blanking interval.

VERTICAL SCROLLING

You can scroll a playfield upward or downward in the window. Each time you display
the playfield, the bit-plane pointers start at a progressively higher or lower place in the
big picture in memory. As the value of the pointer increases, more of the lower part of
the picture is shown and the picture appears to scroll upward. As the value of the
pointer decreases, more of the upper part is shown and the picture scrolls downward. If
your picture has 200 vertical lines, each step can be as little as 1/200th of the screen. In
interlaced mode each step could be 1/400th of the screen if clever manipulation of the
pointers is used, but it is recommended that scrolling be done two lines at a time to
maintain the odd/even field relationship.

Playfield Hardware 73

--

Bit-Plane
Pointer
Start

Address As the value of the bit-plane

pointer increases, more of
the lower part of the
picture is shown.

As it decreases, more of
the upper part is shown.

..

Figure 3-23: Vertical Scrolling

To set up a playfield for vertical scrolling, you need to form bit-planes tall enough to
allow for the amount of scrolling you want, write software to calculate the bit-plane
pointers for the scrolling you want, and allow for the Copper to use the resultant
pointers.

Assume you wish to scroll a playfield upward one line at a time. To accomplish this,
before each field is displayed, the bit-plane pointers have to increase by enough to ensure
that the pointers begin one line lower each time. For a normal-sized, low-resolution

display in which the modulo is 0, the pointers would be incremented by 40 bytes each
time.

HORIZONTAL SCROLLING

You can scroll playfields horizontally from left to right or right to left on the screen.
You control the speed of scrolling by specifying the amount of delay in pixels. Delay
means that an extra word of data is fetched but not immediately displayed. The extra
word is placed just to the left of the window’s leftmost edge and before normal data
fetch. As the display shifts to the right, the bits in this extra word appear on-screen at

74 Playfield Hardware

the left-hand side of the window as bits on the right-hand side disappear off-screen. For
each pixel of delay, the on-screen data shifts one pixel to the right each display field.
The greater the delay, the greater the speed of scrolling. You can have up to 15 pixels
of delay. In high-resolution mode, scrolling is in increments of 2 pixels. Figure 3-24
shows how the delay and extra data fetch combine to cause the scrolling effect.

Display
Data Window Display position in example
Fetch Start is shown with O-bits of delay.
Start ,
As delay is added,
onscreen display
shifts this
0—15 bits of direction.
delay will cause
the system to B SRR R BIOREN

show the

early-fetcrid/ I Background Color
word.

-¢—————Data Fetch 21 Words ————» /- This data is

displayed if
——— Display Window ———3» scroll =0

16 Bits -~ 320 Bits (20 words) ——»
{1 word) e—n—p! -

\ This data is
displayed if

scroll = 15

Figure 3-24: Horizontal Scrolling

Playfield Hardware 75

Note that fetching an extra word for scrolling will disable some sprites.

To set up a playfield for horizontal scrolling, you need to

o

o

Define bit-planes wide enough to allow for the scrolling you need.

Set the data-fetch registers to correctly place each horizontal line, including the
extra word, on the screen.

Set the delay bits.

Set the modulo so that the bit-plane pointers begin at the correct word for each
line. "

Write Copper instructions to handle the changes during the vertical blanking
interval.

Specifying Data Fetch in Horizontal Scrolling

The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is
desired, then the data fetch must start one word sooner (DDFSTRT = $0030). Inciden-
tally, this will disable sprite 7. DDFSTOP remains unchanged. Remember that the set-
tings of the data-fetch registers affect both playfields.

Specifying the Modulo in Horizontal Scrolling

As always, the modulo is two counts less than the difference between the address of the
next word you want to fetch and the address of the last word that was fetched. As an
example for horizontal scrolling, let us assume a 40-byte display in an 80-byte “big pic-
ture.” Because horizontal scrolling requires a data fetch of two extra bytes, the data for
each line will be 42 bytes long.

76 Playfield Hardware

START START+38 START+78
DISPLAY »
WINDOW
Width
< Memory Picture Width >
Figure 3-25: Memory Picture Larger Than the Display Window
Data for Line 1:
Location: START START+2 START+4 . START+40
Leftmost Next Word Next Word Last Display
Display Word' Word

Figure 3-26: Data for Line 1 - Horizontal Scrolling

At this point, the bit-plane pointers contain the value START+42
of 38 gives the correct starting point for the next line.

. Adding the modulo

Data for Line 2:

Location: START+80 START+82 START+84
Leftmost Next Word Next Word
Display Word

. START+120

Last Display
Word

Figure 3-27: Data. for Line 2—Horizontal Scrolli

ng

In the BPLXMOD registers you set the modulo for each bit-plane used.

Playfield Hardware 77

Specifying Amount of Delay

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCON1. You
set the delay separately for each playfield; bits 3-0 for playfield 1 (bit-planes 1, 3, and 5)
and bits 7-4 for playfield 2 (bit-planes 2, 4, and 6).

NOTE: Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to
the same value if you are using only one playfield.

The following example sets the horizontal scroll delay to 7 for both playfields.

BPLCON1 EQU $DFF102 ;s Horizontal scroll register

?

MOVE.W #§77,BPLCON1

SUMMARY

The steps for defining a scrolled playfield are the same as those for defining the basic
playfield, except for the following steps:

o Defining the data fetch. Fetch one extra word per horizontal line and start it
16 pixels before the normal (unscrolled) data-fetch start.

o Defining the modulo. The modulo is two counts greater than when there is
no scrolling.

These steps are added:
o For vertical scrolling, reset the bit-plane pointers for the amount of the

scrolling increment. Reset BPLxPTH and BPLxPTL during the vertical
blanking interval.

o For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCONI1 for 0
to 15 bits of delay.

78 Playfield Hardware

Advanced Topics
This section describes features that are used less often or are optional.

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS

Playfields share the display with sprites. Chapter 7, “System Control Hardware,” shows
how playfields can be given different video display priorities relative to the sprites and
how playfields can collide with (overlap) the sprites or each other.

HOLD-AND-MODIFY MODE

This is a special mode that allows you to produce up to 4,096 colors on the screen at the
same time. Normally, as each value formed by the combination of bit-planes is selected,
the data contained in the selected color register is loaded into the color output circuit for
the pixel being written on the screen. Therefore, each pixel is colored by the contents of
the selected color register.

In hold-and-modify mode, however, the value in the color output circuitry is held, and
one of the three components of the color (red, green, or blue) is modified by bits coming
from certain preselected bit-planes. After modification, the pixel is written to the screen.

The hold-and-modify mode allows very fine gradients of color or shading to be produced
on the screen. For example, you might draw a set of 16 vases, each a different color,
using all 16 colors in the color palette. Then, for each vase, you use hold-and-modify to
very finely shade or highlight or add a completely different color to each of the vases.
Note that a particular hold-and-modify pixel can only change one of the three color
values at a time. Thus, the effect has a limited control.

In hold and modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify
the way bits from planes 1- 4 are treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal
color selection procedure is followed. Thus, the bit combinations from planes

4-1, in that order of significance, are used to choose one of 16 color registers
(registers 0 - 15).

If only five bit-planes are used, the data from the sixth plane is automatically
supplied with the value as 0.

Playfield Hardware 79

(o]

If the 6-5 bit combination is 01, the color of the pixel immediately to the left of
this pixel is duplicated and then modified. The bit-combinations from planes
4 -1 are used to replace the four “blue” bits in the corresponding color register.

If the 6-5 bit combination is 10, the color of the pixel immediately to the left of
this pixel is duplicated and then modified. The bit-combinations from planes
4-1 are used to replace the four “red” bits.

If the 6-5 bit combination is 11, the color of the pixel immediately to the left of
this pixel is duplicated and then modified. The bit-combinations from planes
4-1 are used to replace the four “green” bits.

Using hold-and-modify mode, it is possible to get by with defining only one color regis-
ter, which is COLORO, the color of the background. You treat the entire screen as a
modification of that original color, according to the scheme above.

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in
BPLCONO must be set for hold-and-modify mode to be active:

(o]

o]

o

(o]

Bit HOMOD, bit 11, is 1.
Bit DBLPF, bit 10, is 0 (single-playﬁeld mode specified).
Bit HIRES, bit 15, is 0 (low-resolution mode specified).

Bits BPU2, BPU1, and BPUO - bits 14, 13, and 12, are 101 or 110 (five or six
bit-planes active).

The following example code generates a six-bit-plane display with hold-and-modify mode
turned on. All 32 color registers are loaded with black to prove that the colors are being
generated by hold-and-modify.. The equates are the usual and are not repeated here.

; First, set up the control registers.

LEA CUSTOM, A0 ;Point A0 at custom chips

MOVE.W #86A00,BPLCONO(A0) ;Siz bit-planes, hold-and-modify mode
MOVE.W #0,BPLCON1(A0) ;Horizontal scroll = 0

MOVE.W #0,BPL1IMOD(A0) ;Modulo for odd bit-planes = 0
MOVE.W #0,BPL2MOD(A0) ;Ditto for even bit-planes

MOVE.W #§0038,DDFSTRT(A0) ;Set data-fetch start
MOVE.W #$00D0,DDFSTOP(AO) ;Set data-fetch stop
MOVE.W #$2C81,DIWSTRT(AO) ;Set display window start
MOVE.W #§F4C1, DIWSTOP(AO) ;Set display window stop

80 Playfield Hardware

: Set all color registers = black to prove that hold-and-modify mode is working.

MOVE.W #32,D0
LEA

CREGLOOP:

MOVE.W #8$0000,(A1)+
SUBQ.W +#1,D0
BNE CREGLOOP

CUSTOM+COLORO00,A1

;Initialize counter
;Point A1 at first color register

; Write black to a color register
;Decrement counter
;Loop until all color registers set

?
s Fill siz bit-planes with an easily recognizable pattern.

’

MOVE.W #2000,D0

MOVEL #8$21000,A1
MOVE.L #$23000,A2
MOVE.L #$25000,A3
MOVE.L #$27000,A4
MOVE.L #$29000,A5
MOVE.L #$2B000,A6

FPLLOOP:

MOVE.L #8$55555555,(A1)+

MOVEL #$33333333,(A2)+

MOVE.L #$0FOFOFOF (A3)+
MOVEL #$00FFOOFF (A4)+
MOVE.L #S$FFFFFFFF,(A5)+
MOVE.L #$00000000,(A6)+

SUBQ.W #1,D0

BNE FPLLOOP

’
; Set up a Copper list at $20000.

CLOOP:

MOVEL #$20000,A1

LEA COPPERL,A2
MOVEL (A2),(A1)+

CMPLL #$FFFFFFFE (A2)+
BNE CLOOP

’
; Point Copper at Copper list.

H

MOVE.L #8$20000,COP1LCH(A0)
MOVE.W COPJMP1(A0),DO

; Start DMA.

?

MOVE.W #§$8380,DMACON(A0

;2000 longwords per bit-plane
;Point A1 at bit-plane 1
;Point A2 at bit-plane 2
;Point A3 at bit-plane 3
;Point A4 at bit-plane 4
;Point A5 at bit-plane 5
;Point A6 at bit-plane 6

;Fill bit-plane 1 with $55555555
sFill bit-plane 2 with $33333333
;Fill bit-plane 8 with $OFOFOFOF
;Fill bit-plane 4 with $00FF00FF
;Fill bit-plane 5 with SFFFFFFFF
:Fill bit-plane 6 with $00000000
;Decrement counter

;Loop until all bit-planes are full

;Point A1 at Copper list destination
;Point A2 at Copper list image
;Move a long word

;Check for end of Copper list

;Loop until entire Copper list moved

;Load Copper jump register
;Force load into Copper P.C.

;Enable bit-plane and Copper DMA

Playfield Hardware 81

BRA

’
s Copper list for siz bit-planes. Bit-plane 1 is at $21000; 2 is at $23000;
: 8 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2B000.

COPPERL:
DC.W
DC.W
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

$00E0,$0002
$00E2,$1000
$00E4,$0002
$00E6,$3000
$00ES,$0002
$00EA,$5000
$00EC,$0002
$00EE,$7000
$00F0,$0002
$00F2,$9000

- $00F4,$0002

$00F6,$B000

$FFFF $FFFE

:Bit-plane 1 pointer = $21000
;Bit-plane 2 pointer = $23000
;Bit-plane 8 pointer = $25000
;Bit-plane 4 pointer = $27000
:Bit-plane 5 pointer = $29000

;Bit-plane 6 pointer = $2B000

; Wait for the impossible, i.e., quit

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS

The graphics library provides the ability to split the screen into several “ViewPorts”,
each with its own colors and resolutions. See the Amiga ROM Kernel Manual for more

information.

USING AN EXTERNAL VIDEO SOURCE

An optional board that provides genlock is available for the Amiga. Genlock allows you
to bring in your graphics display from an external video source (such as a VCR, camera,
or laser disk player). When you use genlock, the background color is replaced by the
display from this external video source. For more information, see the instructions fur-

nished with the optional board.

82 Playfield Hardware

SUMMARY OF PLAYFIELD REGISTERS

This section summarizes the registers used in this chapter and the meaning of their bit
settings. The color registers are summarized in the next section. See appendix A for a
summary of all registers.

BPLCONO - Bit Plane Control
NOTE: Bits in this register cannot be independently set.
Bit 0 - unused

Bit 1 - ERSY (external synchronization enable)
1 = External synchronization enabled
0 = External synchronization disabled

Bit 2 - LACE (interlace enable)
1 = interlaced mode enabled
0 = non-interlaced mode enabled

Bit 3 - LPEN (light pen enable)
Bits 4-7 not used (make 0)

Bit 8 - GAUD (genlock éudio enable)
1 = Genlock audio enabled
0 = Genlock audio disabled

Bit 9 - COLOR_ON (color enable)
1 = composite video color-burst enabled
= composite video color-burst disabled

Bit 10 - DBLPF (double-playfield enable)
1 == dual playfields enabled
0 = single playfield enabled

Bit 11 - HOMOD (hold-and-modify enable)
1 = hold-and-modify enabled
0 = hold-and-modify disabled

Bits 14, 13, 12 - BPU2, BPU1, BPUO
Number of bit-planes used.

Playfield Hardware 83

000 = only a background color
001 = 1 bit-plane, PLANE 1
010 = 2 bit-planes, PLANES 1 and 2
011 = 3 bit-planes, PLANES 1- 3
100 = 4 bit-planes, PLANES 1 - 4
101 = 5 bit-planes, PLANES 1 - 5
110 = 6 bit-planes, PLANES 1 - 6
111 not used

Bit 15 - HIRES (high-resolution enable)
1 = high-resolution mode
0 = low-resolution mode

BPLCON1 - Bit-plane Control

Bits 3-0 - PF1H(3-0)
Playfield 1 delay

Bits 7-4 - PF2H(3-0)
Playfield 2 delay

Bits 15-8 not used
BPLCON2 - Bit-plane Control
Bit 6 - PF2PRI
1 = Playfield 2 has priority
0 = Playfield 1 has priority
Bits 0-5 Playfield sprite priority

Bits 7-15 not used

84 Playfield Hardware

DDFSTRT - Data-fetch Start
(Beginning position for data fetch)

Bits 15-8 - not used
Bits 7-3 - pixel position H8-H4
Bits 2-0 - not used

DDFSTOP - Data-fetch Stop
(Ending position for data fetch)

Bits 15-8 - not used
Bits 7-3 - pixel position H8-H4
Bits 1-0 - not used

BPLxPTH - Bit-plane Pointer
(Bit-plane pointer high word, where x is the bit-plane number)

BPLxPTL - Bit-plane Pointer
(Bit-plane pointer low word, where x is the bit-plane number)

DIWSTRT - Display Window Start
(Starting vertical and horizontal coordinates)

Bits 15-8 - VSTART (V7-V0)
Bits 7-0 - HSTART (H7-H0)

DIWSTOP - Display Window Stop
(Ending vertical and horizontal coordinates)

Bits 15-8 - VSTOP (V7-V0)
Bits 7-0 - HSTOP (H7-H0)

BPL1MOD - Bit-plane Modulo
(Odd-numbered bit-planes, playfield 1)

BPL2MOD - Bit-plane Modulo
(Even-numbered bit-planes, playfield 2)

Playfield Hardware 85

Summary of Color Selection

This section contains summaries of playfield color selection including color register con-
tents, example colors, and the differences in color selection in high-resolution and low-
resolution modes.

COLOR REGISTER CONTENTS

Table 3-10 shows the contents of each color register. All color registers are write-only.

Table 3-10: Color Register Contents

Bits Contents

15 - 12 (Unused)

11 - 8 Red
7 - 4 Green
3 - 0 Blue

SOME SAMPLE COLOR REGISTER CONTENTS

Table 3-11 shows a variety of colors and the hexadecimal values to load into the color
registers for these colors.

86 Playfield Hardware

Table 3-11: Some Register Values and Resulting Colors

Value

$FFF
$D00
$F00
$FS80
$F90
$FBO
$FDO
$FFO
$BFO
$8E0
$0F0
$2C0
$0B1
$0BB
$0DB

Color

White

Brick red

Red
Red-orange
Orange
Golden orange
Cadmium yellow
Lemon yellow
Lime green
Light green
Green

Dark green
Forest green
Blue green
Aqua

Value

$1FB
$6FE
$6CE
$00F
$61F
$06D
$91F
$CI1F
$F1F
$FAC
$DB9
$C80
$A87
$cce
$999
$000

Color

Light aqua
Sky blue
Light blue
Blue

Bright blue
Dark blue
Purple
Violet
Magenta,
Pink

Tan

Brown
Dark brown
Light grey
Medium grey
Black

COLOR SELECTION IN LOW-RESOLUTION MODE

Table 3-12 shows playfield color selection in low-resolution mode. If the bit-
combinations from the playfields are as shown, the color is taken from the color register

number indicated.

Playfield Hardware 87

Table 3-12: Low-resolution Color Selection

Single Playfield Dual Playfields
Normal Mode Hold-and-modify Mode Color Register
(Bit-planes 5,4,3,2,1) (Bit-planes 4,3,2,1) Number
Playfield 1
Bit-planes 5,3,1
00000 0000 000 0 *
00001 0001 001 1
00010 0010 010 2
00011 0011 _ 011 3
00100 ' 0100 100 4
00101 0101 101 5
00110 0100 110 6
00111 0111 111 7
Playfield 2
Bit-planes 6,4,2
01000 1000 000 ** 8
01001 1001 001 9
01010 1010 010 10
01011 1011 011 11
01100 1100 100 12
01101 1101 101 13
01110 1110 110 14
01111 1111 111 15
10000 | | 16
10001 | | 17
10010 | | 18
10011 [| 19
10100 NOT NOT 20
10101 USED USED 21
10110 IN IN 22
10111 THIS THIS 23
11000 MODE MODE 24
11001 25
11010 26
11011 27
11100 28
11101 29
11110 30
11111 31

* Color register 0 always defines the background color.
** Selects ‘“‘transparent’” mode instead of selecting color register 8.

88 Playfield Hardware

COLOR SELECTION IN HOLD-AND-MODIFY MODE

In hold-and-modify mode, the color register contents are changed as shown in table 3-13.
This mode is in effect only if bit 10 of BPLCONO = 1.

Table 3-13: Color Selection in Hold-and-modify Mode

Bit-plane 6 Bit-plane 5 Result
0 0 Normal operation (use color register itself)
0 1 Hold green and red B = Bit-plane 4-1 contents
1 0 Hold green and blue R = Bit-plane 4-1 contents
1 1 Hold blue and red G = Bit-plane 4-1 contents

COLOR SELECTION IN HIGH-RESOLUTION MODE

Table 3-14 shows playfield color selection in high-resolution mode. If the bit-
combinations from the playfields are as shown, the color is taken from the color register
number indicated.

Playfield Hardware 89

Table 3-14: High-resolution Color Selection

Single Dual Color
Playfield Playfields Register
Bit-planes 4,3,2,1 Number
Playfield 1
Bit-planes 3,1
0000 - 00 * 0 *x
0001 01 1
0010 10 2
0011 11 3
0100 | 4
0101 NOT USED 5
0110 IN THIS MODE 6
0111 | 7
Playfield 2
Bit-planes 4,2

1000 00 * 8
1001 01 9
1010 10 10
1011 11 11
1100 | 12
1101 NOT USED 13
1110 IN THIS MODE 14
1111 | 15

* Selects “transparent” mode.
xx Color register 0 always defines the background color.

90 Playfield Hardware

Chapter 4

SPRITE HARDWARE

Introduction

Sprites are hardware objects that are created and moved independently of the playfield
display and independently of each other. Together with playfields, sprites form the
. graphics display of the Amiga. You can create more complex animation effects by using
the blitter, which is described in the chapter called “Blitter Hardware.” Sprites are pro-
duced on-screen by eight special-purpose sprite DMA channels. Basic sprites are 16 pix-
els wide and any number of lines high. You can choose from three colors for a sprite’s
pixels, and a pixel may also be transparent, showing any object behind the sprite. For
larger or more complex objects, or for more color choices, you can combine sprites.

Sprite Hardware 91

Sprite DMA channels can be reused several times within the same display field. Thus,
you are not limited to having only eight sprites on the screen at the same time.

ABOUT THIS CHAPTER

This chapter discusses the following topics:

(o]

o

Defining the size, shape, color, and screen position of sprites.
Displaying and moving sprites.

Combining sprites for more complex images, additional width, or additional
colors.

Reusing a sprite DMA channel multiple times within a display field to create
more than eight sprites on the screen at one time.

Forming a Sprite

To form a sprite, you must first define it and then create a formal data structure in
memory. You define a sprite by specifying its characteristics:

o On-screen width of up to 16 pixels.
o Unlimited height.
o Any shape.
o A combination of three colors, plus transparent.
o Any position on the screen.
‘SCREEN POSITION

A sprite’s screen position is defined as a set of X,Y coordinates. Position (0,0), where
X = 0 and Y = 0, is the upper left-hand corner of the display. You define a sprite’s
location by specifying the coordinates of its upper left-hand pixel. Sprite position is
always defined as though the display modes were low-resolution and non-interlaced. The
X,Y coordinate system and definition of a sprite’s position are graphically represented in

92 Sprite Hardware

figure 4-1. Notice that because of display overscan, position (0,0) (that is, X = 0,
Y = 0) is not normally in a viewable region of the screen.

(0,0)

Visible Screen Area

SK 2

Figure 4-1: Defining Sprite On-screen Position

The amount of viewable area is also affected by the size of the playfield display window.
See the “Playfield Hardware” chapter for more information about overscan and display
windows.

Horizontal Position

A sprite’s horizontal position (X value) can be at any pixel on the screen from 0 to 447.
To be visible, however, an object must be within the boundaries of the playfield display
window. In addition, the normally usable range of the video screen is from pixel 64 to
pixel 383 (that is, 320 pixels of usable width). A larger area is actually scanned by the
video beam but is not usually visible on the screen.

If you specify an X value for the sprite of less than 64 or an X value outside the display
window, part or all of the sprite may not appear on the screen. This is sometimes desir-
able; such a sprite is said to be “clipped.”

To make a sprite appear, unclipped, in its correct on-screen horizontal position, add 64
to the X value. For example, to make the upper leftmost pixel of a sprite appear at a
position 94 pixels from the left edge of the screen, you would perform this calculation:

Sprite Hardware 93

Desired X position 94
32 off-screen lines +64

158

Thus, 158 becomes the X value, which will be written into the data structure.

Note that the X position represents the location of the very first (leftmost) pixel in the
full 16-bit-wide sprite. This is always the case, even if the leftmost pixels are specified as
transparent and do not appear on the screen. If the sprite shown in figure 4-2 were
located at an X value of 158, the actual image would begin on-screen four pixels later at

162. The first four pixels in this sprite are transparent and allow the background to
show through.

4

ol

|e———16 Pixels———>]

Figure 4-2: Position of Sprites

Vertical Position

You can select any position from line 0 to line 262 for the topmost edge of the sprite.
The normal usable range of the video screen, however, is from line 44 through line 243.
This allows the normal display height of 200 lines in non-interlaced mode. If you specify

a vertical position (Y value) of less than 44, the top edge of the sprite may not appear
on screen.

¥
To make a sprite appear in its correct on-screen vertical position, add 44 to the desired

position. For example, to make the upper leftmost pixel appear 25 lines below the top
edge of the screen, perform this calculation:

94 Sprite Hardware

Desired Y position 25
44 above-screen lines +44

69

Thus, 69 is the Y value you will write into the data structure.

Clipped Sprites

As noted above, sprites will be partially or totally clipped if they pass across or beyond
the boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are
“normal” for a centered display on a standard video monitor. If you choose other values
to establish your display window, your sprites will be clipped accordingly.

SIZE OF SPRITES

Sprites are 16 pixels wide and can be almost any height you wish — as short as one line
or taller than the screen. You would probably move a very tall sprite vertically to
display a portion of it at a time.

Sprite size is based on a pixel that is 1/320th of a normal screen’s width and 1/200th of
a normal screen’s height. This pixel size corresponds to the low-resolution and non-
interlaced modes of the normal full-size playfield. Sprites, however, are independent of

playfield modes of display, so changing the resolution or interlace mode of the playfield
has no effect on the size or resolution of a sprite.

SHAPE OF SPRITES

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite’s
shape by specifying which pixels actually appear in each of the sprite’s locations. For
example, figures 4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first
figure shows only the spaceship as you might sketch it out on graph paper. The second
figure shows the spaceship within the 16-pixel width. The Os around the spaceship mark
the part of the sprite not covered by the spaceship and transparent when displayed.

Sprite Hardware 95

X X
XXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXX
XX

Figure 4-3: Shape of Spaceship

0000XX0000000000
DOXXXXXX00000000
XXXXXXXXXX000000
XXXXXXXXXX000000
0O00XXXX000000000

Figure 4-4: Sprite with Spaceship Shape Defined

In this example, the widest part of the shape is ten pixels and the shape is shifted to the
left of the sprite. Whenever the shape is narrower than the sprite, you can control
which part of the sprite is used to define the shape. This particular shape could also
start at any of the pixels from 2-7 instead of pixel 1.

SPRITE COLOR

When sprites are used individually (that is, not “attached” as described under
“Attached Sprites” later), each pixel can be one of three colors or transparent. Colors
are selected in much the same manner as playfield colors. Figure 4-5 shows how the
color of each pixel in a sprite is determined.

96 Sprite Hardware

High-order word of sprite data line

o|jojojo|oftr}j1|1y0f1]|1|1j0j0|0}|0

.
(T Tl T T

ojojojojojr|rjr1jofrfrj1jojo0joilo0

\ Low-order word of sprite data line
Transparent

Forms a binary

/ code, used as
0|0 the color choice
from a group of

color registers.

Figure 4-5: Sprite Color Definition

The 0s and 1s in the two data words that define each line of a sprite in the data struc-
ture form a binary number. This binary number points to one of the four color registers
assigned to that particular sprite DMA channel. The eight sprites use system color
registers 16 - 31. For purposes of color selection, the eight sprites are organized into
pairs and each pair uses four of the color registers as shown in figure 4-6. Note that the
color value of the first register in each group of four registers is ignored by sprites.
When the sprite bits select this register, the “transparent” value is used.

Sprite Hardware 97

Codes 01, 10, or 11

select one of three)

possible registers Sprite O or 1
from the normal

color register group,

from which the

actual color data

is taken. Sprite2or 3

Color Register Set

00 Unused | 16
01

L 10
1
Unused |20

00 \
1
0 Yields

10

1 / Transparent

00 Unused | 24

01
10

Sprite4or 5

Sprite 6 or 7 Unused [28

0o
01

10
11 31

e

F‘igure 4-6: Color Register Assignments

If you require certain colors in a sprite, you will want to load the sprite’s color registers
with those colors. The “Playfield Hardware” chapter contains instructions on loading
color registers.

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes
transparent and shows the color of any other sprite or playfield that has lower video
priority. An object with low priority appears “behind” an object with higher priority.
Each sprite has a fixed video priority with respect to all the other sprites. You can vary
the priority between sprites and playfields. (See chapter 7, “System Control Hardware,”
for more information about sprite priority.)

DESIGNING A SPRITE

For design purposes, it is convenient to lay out the sprite on paper first. You can show
the desired colors as numbers from O to 3. For example, the spaceship shown above
might look like this:

98 Sprite Hardware

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

The next step is to convert the numbers 0-3 into binary numbers, which will be used to
build the color descriptor words of the sprite data structure. The section below shows
how to do this.

BUILDING THE DATA STRUCTURE

After defining the sprite, you need to build its data structure, which is a series of 16-bit
words in a contiguous memory area. Some of the words contain position and control
information and some contain color descriptions. To create a sprite’s data structure, you
need to:

o Write the horizontal and vertical position of the sprite into the first control
word.

o Write the vertical stopping position into the second control word.

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into
binary color numbers. Use the binary values to build color descriptor (data)
words and write these words into the data structure.

o Write the control words that indicate the end of the sprite data structure.

Table 4-1 shows a sprite data structure with the memory location and function of each
word:

Sprite Hardware 99

Table 4-1: Sprite Data Structure

Memory

Location 16-bit Word Function

N Sprite control word 1 Vertical and horizontal start position
N+1 Sprite control word 2 Vertical stop position

N+2 Color descriptor low word Color bits for line 1

N+3 Color descriptor high word Color bits for line 1

N+4 Color descriptor low word Color bits for line 2

N+5 Color descriptor high word Color bits for line 2

End-of-data words Two words indicating
the next usage of this sprite

All memory addresses for sprites are word addresses. You will need enough contiguous
memory to provide room for two words for the control information, two words for each
horizontal line in the sprite, and two end-of-data words.

Because this data structure must be accessible by the special-purpose chips, you must
ensure that this data is located within the lowest 512K bytes of the system memory.

Figure 4-7 shows how the data structure relates to the sprite.

100 Sprite Hardware

Each group of words defines one

- 16 bits »> vertical usage of a sprite.
. Contains starting /ocation and
:ch:::s'gg VSTART, HSTART physical appearance of this
VSTOP, control bits sprite image.
Low word of data, line 1
High word of data, line 1 Pairs of words containing
color information for pixel
p— Data describing lines.
j— central lines of
this sprite
Low word of data, last line
High word of data, last line Last word pair contains all
B . zeros if this sprite processor is

to be used only once vertically
in the display frame.

yjooooco00000000000

0000000CGOOOOOOQOO

EACH WORD PAIR
Low word of pair
HSTART High word of pair
4 N
DESCRIBES ONE VIDEQ
Part VSTART ¥y / LINE OF THE SPRITE
ofa >
screen | —
display -
VSTOP I
. _J

Figure 4-7: Data Structure Layout

Sprite Hardware 101

Sprite Control Word 1 : SPRxPOS

This word contains the vertical (VSTART) and horizontal (HSTART) starting position
for the sprite. This is where the topmost line of the sprite will be positioned.

Bits 15-8 contain the low 8 bits of VSTART
Bits 7-0 contain the high 8 bits of HSTART

Sprite Control Word 2 : SPRxCTL

This word contains the vertical stopping position of the sprite on the screen. It also con-
tains some data having to do with sprite attachment, which is described later on.

SPRxCTL
Bits 15-8 The low eight bits of VSTOP
Bit 7 (Used in attachment)
Bits 6-3 Unused (make zero)
Bit 2 The VSTART high bit
Bit 1 The VSTOP high bit
Bit 0 The HSTART low bit

The value (VSTOP - VSTART + 1) defines how many lines high the sprite will be.

Sprite Color Descriptor Words

It takes two color descriptor words to describe each horizontal line of a sprite; the high-
order word and the low-order word. To calculate how many color descriptor words you
 need, multiply the height of the sprite in lines by 2. The bits in the high-order color
descriptor word contribute the leftmost digit of the binary color selector number for each
pixel; the low-order word contributes the rightmost digit.

To form the color descriptor words, you first need to form a picture of the sprite, show-

ing the color of each pixel as a number from 0 - 3. Each number represents one of the
colors in the sprite’s color registers. For example, here is the spaceship sprite again:

102 Sprite Hardware

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

Next, you translate each of the numbers in this picture into a binary number. The first
line in binary is shown below. The binary numbers are represented vertically with the
low digit in the top line and the high digit right below it. This is how the two color
descriptor words for each sprite line are written in memory.

0000100110010000
0000011111100000

The first line above becomes the color descriptor high word for line 1 of the sprite. The
second line becomes the color descriptor low word. In this fashion, you translate each
line in the sprite into binary Os and 1s.

Each of the binary numbers formed by the combination of the two data words for each
line refers to a specific color register in that particular sprite channel’s segment of the
color table. Sprite channel 0, for example, takes its colors from registers 17 - 19. The
binary numbers corresponding to the color registers for sprite DMA channel O are shown
in table 4-2.

Table 4-2: Sprite Color Registers

Binary Number Color Register Number

00 Transparent
01 17
10 18
11 19

Recall that binary 00 always means transparent and never refers to a color.

Sprite Hardware 103

End-of-data Words

When the vertical position of the beam counter is equal to the VSTOP value in the
sprite control words, the next two words fetched from the sprite data structure are writ-
ten into the sprite control registers instead of being sent to the color registers. These
two words are interpreted by the hardware in the same manner as the original words
that were first loaded into the control registers. If the VSTART value contained in
these words is lower than the current beam position, this sprite will not be reused in this
display field. For consistency, the value O should be used for both words when ending
the usage of a sprite. Sprite reuse is discussed later.

The following data structure is for the spaceship sprite. It will be located at V = 65
and H = 128 on the screen.

SPRITE:
DC.W $6D60,$7200 ;VSTART, HSTART, VSTOP
DC.W $0990,$07E0 ;First pair of descriptor words

DC.W $13C8,$0FF0
DC.W $23C4,$1FF8
DC.W $13C8,$0FF0
DC.W $0990,$07E0
DC.W $0000,$0000 ;End of sprite data

Displaying a Sprite

After building the data structure, you need to tell the system to display it. This section
describes the display of sprites in “automatic” mode. In this mode, once the sprite DMA
channel begins to retrieve and display the data, the display continues until the VSTOP
position is reached. Manual mode is described later on in this chapter.
The following steps are used in displaying the sprite:

1. Decide which of the eight sprite DMA channels to use.

2. Set the sprite pointers to tell the system where to find the sprite data.

3. Turn on sprite direct memory access if it is not already on.

104 Sprite Hardware

4. For each subsequent display field, during the vertical blanking interval, rewrite
the sprite pointers.

CAUTION

If sprite DMA is turned off while a sprite is being displayed (that is, after
VSTART but before VSTOP), the system will continue to display the line of
sprite data that was most recently fetched. This causes a vertical bar to
appear on the screen. It is recommended that sprite DMA be turned off only
during vertical blanking or during some portion of the display where you are
sure that no sprite is being displayed.

SELECTING A DMA CHANNEL AND SETTING THE POINTERS

In deciding which DMA channel to use, you should take into consideration the colors
assigned to the sprite and the sprite’s video priority.

The sprite DMA channel uses two pointers to read in sprite data and control words.
During the vertical blanking interval before the first display of the sprite, you need to
write the sprite’s memory address into these pointers. The pointers for each sprite are
called SPRxPTH and SPRxPTL, where “x” is the number of the sprite DMA channel.
SPRxPTH points to the high three bits of the memory address of the first word in the
sprite and SPRxPTL points to the low fifteen bits. As usual, you can write a long word
into SPRxPTH.

In the following example the processor initializes the data pointers for sprite 0. Nor-
mally, this is done by the Copper. The sprite is at address $20000.

SPROPTH EQU $DFF120
SPROPTL EQU $DFF122

]

MOVE.L #%$20000,SPROPTH ;Write $20000 to sprite 0 pointer

These pointers are dynamic; they are incremented by the sprite DMA channel to point
first to the control words, then to the data words, and finally to the end-of-data words.
After reading in the sprite control information and storing it in other registers, they
proceed to read in the color descriptor words. The color descriptor words are stored in
sprite data registers, which are used by the sprite DMA channel to display the data on
screen. For more information about how the sprite DMA channels handle the display,
see the “Hardware Details” section below.

Sprite Hardware 105

RESETTING THE ADDRESS POINTERS

For one single display field, the system will automatically read the data structure and
produce the sprite on-screen in the colors that are specified in the sprite’s color registers.
If you want the sprite to be displayed in subsequent display fields, you must rewrite the
contents of the sprite pointers during each vertical blanking interval. This is necessary
because during the display field, the pointers are incremented to point to the data which
is being fetched as the screen display progresses. '

The rewrite becomes part of the vertical blanking routine, which can be handled by'
instructions in the Copper lists.

SPRITE DISPLAY EXAMPLE

This example displays the spaceship sprite at location V. = 65, H = 128. The equates
are the usual, so they’re not repeated here.

; First, we set up a single bit-plane.

.
y

LEA CUSTOM,A0 ;Point A0 at custom chips
MOVE.W #$1200,BPLCONO(A0) ;1 bit-plane color is on

MOVE.W #$0000,BPLIMOD(A0) sModulo = 0

MOVE.W #8$0000,BPLCON1(A0) ;Horizontal scroll value = 0
MOVE.W #$0024, BPLCON2(A0) :Sprites have priority over playfields
MOVE.W #$0038,DDFSTRT(AO0) :Set data-fetch start

MOVE.W #$00D0,DDFSTOP(A0) ;Set data-fetch stop

MOVE.W #$2C81,DIWSTRT(A0) :Set display window start

MOVE.W #8$F4C1,DIWSTOP(A0) ;Set display window stop
; Set up color registers.

’

MOVE.W #$0008,COLORO00(A0) ;Background color = dark blue
MOVE.W #8$0000,COLOR01(A0) ;Foreground color = black
MOVE.W #8$0FF0,COLOR17(A0) ;Color 17 = yellow

MOVE.W #$00FF,COLOR18(A0) ;Color 18 = cyan

MOVE.W #$0F0F,COLOR19(A0) ;Color 19 = magenta

)
: Move Copper list to $20000.

)
MOVE.L #8$20000,A1 :Point A1 at Copper list destination
LEA COPPERL,A2 ;Point A2 at Copper list source

106 Sprite Hardware

CLOOP:

MOVE.L (A2),(A1)+ ;Move a long word
CMP.L #$FFFFFFFE,(A2)+ ;Check for end of list
BNE CLOOP ;Loop until entire list is moved

’
; Move sprite to $25000.

’

MOVE.L #$25000,A1 ;Point A1 at sprite destination

LEA SPRITE,A2 ;Point A2 at sprite source
SPRLOOP:

MOVE.L (A2),(A1)+ ;Move a long word

CMP.L #800000000,(A2)+ :Check for end of sprite

BNE SPRLOOP ;Loop until entire sprite is moved

’

: Now we write a dummy sprite to $30000, since all eight sprites are activated
; at the same time and we’re only going to use one. The remaining sprites

; will point to this dummy sprite data.

b

MOVE.L #8$00000000,$30000 ; Write it

)
; Point Copper at Copper list.

’

MOVE.L #$20000,CUSTOM+COP1LC

’
; Fill bit-plane with SFFFFFFFF.

MOVE.L #$21000,A1 ;Point A1 at bit-plane

MOVE.W #2000,D0 12000 long words = 8000 bytes
FLOOP:

MOVE.L #$FFFFFFFF,(A1)+ ;Move a long word of $FFFFFFFF

SUBQ.W #1,D0 ;Decrement counter

BNE FLOOP ;Loop until bit-plane is full
; Start DMA.

MOVE.W. CUSTOM+COPJMP1,D0 ;Force load into Copper

; program counler
MOVE.W #$83A0,(CUSTOM+DMACON) ;Bit-plane, Copper, and sprite DMA
BRA ;-...next things to do...

) ;
; This is a Copper list for one bit-plane, and 8 sprites. The bit-plane lives
; at $21000. Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).

Sprite Hardware 107

’

COPPERL:
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.W
DC.W
DC.wW

$00E0,$0002
$00E2,$1000
$0120,$0002
$0122,$5000
$0124,$0003
$0126,$0000
$0128,$0003
$012A,$0000
$012C,$0003
$012E,$0000
$0130,$0003
$0132,$0000
$0134,$0003
$0136,$0000
$0138,$0003
$013A,$0000
$013C,$0003
$013E,$0000

$FFFF $FFFE

:Bit plane 1 pointer = $21000
;Sprite 0 pointer = $25000
:Sprite 1 pointer = $30000
;Sprite 2 pointer = $30000
:Sprite 8 pointer = $30000
:Sprite 4 pointer = $30000
;Sprite 5 pointer = $30000
;Sprite 6 pointer = $30000
;Sprite 7 pointer = $30000

;End of Copper list

' .
: Sprite data for spaceship sprite. It appears on the screen at V=65 and H=128.

SPRITE:
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.W
DC.wW

$6D60,$7200
$0990,$07E0
$13C8,$0FF0
$23C4,$1FF8
$13C8,$0FF0
$0990,$07E0
$0000,$0000

Moving a Sprite

;VSTART, HSTART, VSTOP
;First pair of descriptor words

;End of sprite data

A sprite generated in automatic mode can be moved by specifying a different position in
the data structure. For each display field, the data is reread and the sprite redrawn.
Therefore, if you change the position data before the sprite is redrawn, it will appear in

a new position and will seem to be moving.

108 Sprite Hardware

You must take care that you are not moving the sprite (that is, changing control word
data) at the same time that the system is using that data to find out where to display
the object. If you do so, the system might find the start position for one field and the
stop position for the following field as it retrieves data for display. This would cause a
“glitch” and would mess up the screen. Therefore, you should change the content of the
control words only during a time when the system is not trying to read them. Usually,
the vertical blanking period is a safe time, so moving the sprites becomes part of the
vertical blanking tasks and is handled by the Copper as shown in the example below.

As sprites move about on the screen, they can collide with each other or with either of
the two playfields. You can use the hardware to detect these collisions and exploit this
capability for special eflects. In addition, you can use collision detection to keep a mov-
ing object within specified on-screen boundaries. Collision is described in chapter 7,
“System Control Hardware.”

In this example of moving a sprite, the spaceship is bounced around on the screen,
changing direction whenever it reaches an edge.

The sprite position data, containing VSTART and HSTART, lives in memory at $25000.
VSTOP is located at $25002. You write to these locations to move the sprite. Once
during each frame, VSTART is incremented (or decremented) by 1 and HSTART by 2.
Then a new VSTOP is calculated, which will be the new VSTART + 6.

MOVE.B +#151,D0 ;Initialize horizontal count

MOVEB #194,D1 ;Initialize vertical count

MOVE.B #64,D2 ;Initialize horizontal position
MOVE.B #44,D3 ;Initialize vertical position

MOVE.B #1,D4 ;Initialize horizontal increment value
MOVE.B #1,D5 ;Inttialize vertical increment value

¥
;Here we wait for the vertical blanking bit in INTREQR to turn on.
; This ensures a glitch-free display.

VLOOP:

MOVE.W CUSTOM+INTREQR,D6 ;Read interrupt request word
AND.W #$0020,D6 ;Mask off all but vertical blank bit
BEQ VLOOP ;Loop until bit is a 1
MOVE.W #§0020,CUSTOM-+INTREQ ; Vertical bit is on, so reset it
?
ADD.B D4,D2 ;Increment horizontal value
SUBQ.B #,D0 ;Decrement horizontal counter
BNE L1
MOVE.B #151,D0 ;Count exhausted, reset to 151
EOR.B #$FE,D4 ;Negate the increment value

Sprite Hardware 109

L1: MOVE.B D2,$25001 :Write new HSTART value to sprite

ADD.B D5,D3 sIncrement vertical value
SUBQ.B +#1,D1 ;Decrement vertical counter
BNE L2
MOVE.B #194,D1 ;Count exhausted, reset to 194
EOR.B #$FE,D5 ;Negate the increment value
L2: MOVE.B D3,$25000 sWrite new VSTART value to sprite
MOVE.B D3,D6 ;Must now calculate new VSTOP
ADDB #6,D6 ; VSTOP always VSTART+6 for spaceship
MOVE.B D6,$25002 s Write new VSTOP to sprite
BRA VLOOP ;Loop forever

Creating Additional Sprites

To use additional sprites, you must create a data structure for each one and arrange the
display as shown in the previous section, naming the pointers SPR1PTH and SPR1PTL
for sprite DMA channel 1, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so
on.

Note that when you enable sprite DMA for one sprite, you enable DMA for all the
sprites and place them all in automatic mode. Thus, you do not need to repeat this step
when using additional sprite DMA channels. Once the sprite DMA channels are enabled,
all eight sprite pointers must be initialized to either a real sprite or a safe null sprite. An
uninitialized sprite could cause spurious sprite video to appear.

Also, recall that each pair of sprites takes its color from different color registers, as
shown in table 4-3.

Table 4-3: Color Registers for Sprite Pairs

Sprite Numbers Color Registers

Oand 1 17-19
2 and 3 21 - 23
4and 5 25 - 27
6 and 7 29 - 31

110 Sprite Hardware

When you have more than one sprite on the screen, you may need to take into con-
sideration their relative video priority, that is, which sprite appears in front of or behind
another. Each sprite has a fixed video priority with respect to all the others. The
lowest numbered sprite has the highest priority and appears in front of all other sprites;
the highest numbered sprite has the lowest priority. This is illustrated in figure 4-8.

Figure 4-8: Sprite Priority

Reusing Sprite DMA Channels

Each of the eight sprite DMA channels can produce more than one independently con-
trollable image. There may be times when you want more than eight objects, or you
may be left with fewer than eight objects because you have attached some of the sprites
to produce more colors or larger objects or overlapped some to produce more complex
images. You can reuse each sprite DMA channel several times within the same display
field, as shown in figure 4-9.

Sprite Hardware 111

Each image of this sprite
may be placed at any
desired spot, horizontally
or vertically. However,

(% . at least one video line
=p S must separate the bottom
Part - ‘ of one usage of a sprite -
of a o o from the starting point
screen of the next usage.
display
. J

Figure 4-9: Typical Example of Sprite Reuse

In single-sprite usage, two all-zero words are placed at the end of the data structure to
stop the DMA channel from retrieving any more data for that particular sprite during
that display field. To reuse a DMA channel, you replace this pair of zero words with
another complete sprite data structure, which describes the reuse of the DMA channel at
a position lower on the screen than the first use. You place the two all-zero words at the
end of the data structure that contains the information for all usages of the DMA chan-
nel. For example, figure 4-10 shows the data structure that describes the picture above.

The only restrictions on the reuse of sprites during a single display field is that the bot-
tom line of one usage of a sprite must be separated from the top line of the next usage
by at least one horizontal scan line. This restriction is necessary because only two DMA
cycles per horizontal scan line are allotted to each of the eight channels. The sprite
channel needs the time during the blank line to fetch the control word describing the
next usage of the sprite.

The following example displays the spaceship sprite and then redisplays it as a different

object. Only the sprite data list is affected, so only the data list is shown here. How-
ever, the sprite looks best with the color registers set as shown in the example.

112 Sprite Hardware

SPRITE DISPLAY LIST

Increasing
RAM . . > -
Memory Data describing the first vertical
Addresses usage of this sprite.
Data describing the second vertical
_ / usage of this sprite. Contents of
vertical start word must be at least
one video line below actual end of
preceding usage.
—_— End-of-data words ending the
—_— / usage of this sprite.
y — |
Figure 4-10: Typical Data Structure for Sprite Re-use
LEA CUSTOM,A0

MOVE.W #$0F00,COLOR17(A0)
MOVE.W #$0FF0,COLOR18(AO0)

;Color 17 = red
; Color 18 = yellow

MOVE.W #80FFF,COLOR19(A0) ;Color 19 = white

SPRITE:

DC.wW
DC.W
DC.W
DC.wW
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.wW

$6D60,$7200
$0990,$07E0
$13C8,$0FF0
$23C4,$1FF8
$13C8,$0FF0
$0990,$07E0
$8080,$8D00
$1818,$0000
$7E7E,$0000
$7FFE,$0000
$FFFF,$2000
$FFFF,$2000
$FFFF,$3000
$FFFF,$3000
$7FFE,$1800
$7FFE,$0C00

;VSTART, HSTART, VSTOP for new sprite

Sprite Hardware 113

DC.W
DC.W
DC.W
DC.W
DC.W

$3FFC,$0000
$0FF0,$0000
$03C0,$0000
$0180,$0000
$0000,$0000

Overlapped Sprites

;End of sprite data

For more complex or larger moving obj‘ects, you can overlap sprites. Overlapping simply
means that the sprites have the same or relatively close screen positions. A relatively
close screen position can result in an object that is wider than 16 pixels.

The built-in sprite video priority ensures that one sprite appears to be behind the other
when sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the
highest priority and the highest numbered sprite the lowest priority. Therefore, when
designing displays with overlapped sprites, make sure the “foreground” sprite has a
lower number than the “background” sprite. In figure 4-11, for example, the cage
should be generated by a lower-numbered sprite DMA channel than the monkey.

114 Sprite Hardware

Built in sprite ‘Priority’’
displays one sprite
behind the other
when overlapped.

Individual sprites
can be combined
by simple overlap.

Figure 4-11: Overlapping Sprites (Not Attached)

You can create a wider sprite display by placing two sprites next to each other. For
" instance, figure 4-12 shows the spaceship sprite and how it can be made twice as large by
using two sprites placed next to each other.

Sprite Hardware 115

(128,65)

K/

(128,65) (144,65) 7
7 /\\ "
Y //~ Q8 \\\\ N\
Sprite 0 Sprite 1

Figure 4-12: Placing Sprites Next to Each Other

Attached Sprites

You can create sprites that have fifteen possible color choices (plus transparent) instead

of three (plus transparent), by “attaching” two sprites. To create attached sprites, you
must:

o Use two channels per sprite, creating two sprites of the same size and located at
the same position.

o Set a bit called ATTACH in the second sprite control word.

The fifteen colors are selected from the full range of color registers available to sprites —
registers 17 through 31. The extra color choices are possible because each pixel contains
four bits instead of only two as in the normal, unattached sprite. Each sprite in the
attached pair contributes two bits to the binary color selector number. For example, if
you are using sprite DMA channels 0 and 1, the high- and low-order color descriptor
words for line 1 in both data structures are combined into line 1 of the attached object.

Sprites can be attached in the following combinations:

116 Sprite Hardware

Sprite 1 to sprite 0
Sprite 3 to sprite 2
Sprite 5 to sprite 4
Sprite 7 to sprite 6

Any or all of these attachments can be active during the same display field. As an
example, assume that you wish to have more colors in the spaceship sprite and you are
using sprite DMA channels 0 and 1. There are five colors plus transparent in this sprite.

0000154444510000
0001564444651000
0015676446765100
0001564444651000
0000154444510000

The first line in this sprite requires the four data words shown in table 4-4 to form the
correct binary color selector numbers.

Table 4-4: Data Words for First Line of Spaceship Sprite

Pixel Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Line 1 0 0 0 0 0 O 0 0 0 0 0 0 0 0 o0 O
Line 2 0 0 0 0 0 1 1 1 1 1 1 0 O O O O
Line 3 0 0 0 0 0 0 0 0 o 0 0 0 O O o0 o
Line 4 0 0 0 0 1 1 0 60 0 0 1 1 0 0 o0 O

Sprite Hardware 117

The binary numbers O through 15 select registers 17 through 31 as shown in table 4-5.

Table 4-5: Color Registers in Attached Sprites

Decimal Binary Color Register

Number Number Number
0 0000 16 *
1 0001 17
2 0010 18
3 0011 19
4 0100 20
5 0101 21
6 0110 22
7 0111 23
8 1000 24
9 1001 25

10 1010 26
11 1011 27
12 1100 28
13 1101 29
14 1110 30
15 1111 31

* Unused; yields transparent pixel.

The highest numbered sprite (number 1, in this example) contributes the highest order
bits (leftmost) in the binary number. The high-order data word in each sprite contri-

butes the leftmost digit. Therefore, the lines above are written to the sprite data struc-
tures as follows:

Line 1 Sprite 1 high-order word for sprite line 1

Line 2 Sprite 1 low-order word for sprite line 1
Line 3 Sprite 0 high-order word for sprite line 1
Line 4 Sprite 0 low-order word for sprite line 1

118 Sprite Hardware

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control word 2, is set
to 1 in the data structure for the odd-numbered sprite. So, in this example, you set bit
7 in sprite control word 2 in the data structure for sprite 1.

When the sprites are moved, the Copper list must keep them both at exactly the same
position relative to each other. If they are not kept together on the screen, their pixels
will change color. Each sprite will revert to three colors plus transparent, but the colors
may be different than if they were ordinary, unattached sprites. The color selection for
the lower numbered sprite will be from color registers 17-19. The color selection for the
higher numbered sprite will be from color registers 20, 24, and 28.

The following data structure is for the six-color spaceship made with two attached
sprites.

SPRITEO:
DC.W $6D60,$7200 ;VSTART = 65, HSTART = 128
DC.W $00C30,$0000 ;First color descriptor word

DC.W $1818,$0420
DC.W $342C,$0E70
DC.W $1818,$0420
DC.W $0C30,$0000

DC.W $0000,$0000 ;:End of sprite 0

SPRITE1:
DC.W $6D60,$7280 :Same as sprite 0 except attach bit on
DC.W $07E0,$0000 ;First descriptor word for sprite 1

DC.W $0FF0,$0000
DC.W $1FF8,$0000
DC.W $0FF0,$0000
DC.W $07E0,$0000
DC.W $0000,$0000 :End of sprite 1

Manual Mode

It is almost always best to load sprites using the automatic DMA channels. Sometimes,
however, it is useful to load these registers directly from one of the microprocessors.
Sprites may be activated “manually” whenever they are not being used by a DMA chan-
nel. The same sprite that is showing a DMA-controlled icon near the top of the screen
can also be reloaded manually to show a vertical colored bar near the bottom of the
screen. Sprites can be activated manually even when the sprite DMA is turned off.

Sprite Hardware 119

You display sprites manually by writing to the sprite data registers SPRxDATB and
SPRxDATA, in that order. You write to SPRXDATA last because that address “arms”
the sprite to be output at the next horizontal comparison. The data written will then be
displayed on every line, at the horizontal position given in the ‘“H” portion of the posi-
tion registers SPRxPOS and SPRxCTL. If the data is unchanged, the result will be a
vertical bar. If the data is reloaded for every line, a complex sprite can be produced.

The sprite can be terminated (“disarmed”) by writing to the SPRxCTL register. If you
write to the SPRxPOS register, you can manually move the sprite horizontally at any
time, even during normal sprite usage.

Sprite Hardware Details

Sprites are produced by the circuitry shown in figure 4-13. This figure shows in block
form how a pair of data words becomes a set of pixels displayed on the screen.

The circuitry elements for sprite display are explained below.

o Sprite data registers. The registers SPRXDATA and SPRxDATB hold the bit pat-
terns that describe one horizontal line of a sprite for each of the eight sprites. A line

is 16 pixels wide, and each line is defined by two words to provide selection of three
colors and transparent.

o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is
individually sent to the color select circuitry at the time that the pixel associated
with that bit is being displayed on-screen.

Immediately after the data is transferred from the sprite data registers, each
parallel-to-serial converter begins shifting the bits out of the converter, most
significant (leftmost) bit first. The shift occurs once during each low-resolution pixel
time and continues until all 16 bits have been transferred to the display circuitry.

The shifting and data output does not begin again until the next time this converter
is loaded from the data registers.

Because the video image is produced by an electron beam that is being swept from
left to right on the screen, the bit-image of the data corresponds exactly to the
image that actually appears on the screen (most significant data on the left).

o Sprite serial video data. Sprite data goes to the priority circuit to establish the
priority between sprites and playfields.

120 Sprite Hardware

Sprite position registers. These registers, called SPRxPOS, contain the horizontal
position value (X value) and vertical position value (Y value) for each of the eight
sprites.

Sprite control registers. These registers, called SPRxCTL, contain the stopping posi-
tion for each of the eight sprites and whether or not a sprite is attached.

Beam counter. The beam counter tells the system the current location of the video
beam that is producing the picture.

Comparator. This device compares the value of the beam counter to the Y value in
the position register SPRxPOS. If the beam has reached the position at which the
leftmost upper pixel of the sprite is to appear, the comparator issues a load signal to
the serial-to-parallel converter and the sprite display begins.

Sprite Hardware 121

Beam Counter
(horizontal position) SPRXDATA
Load Decode
(68000 or DMA)
. Equal
Comparator

[seRxPos
Load Decode
] L (68000 or DMA)

SPRxPOS (horiz.)

. “ARM" Sprite
4 '

Q S
AND]
YL té e R SPRXCTL
Load Decode
SPRxDATA {68000 or DMA)
—
Parallel to Serial _ ' Sprite Serial
Converter o - Video Data
- Output to
Parallel to Serial o _ Video Priority
Converter R\ Logic)
— ® AL
SPRxDATA
1\ L SPRxDATA
Load Decode
‘ “ARM” (68000 or DMA)
Sprite
DATA BUS

Figure 4-13: Sprite Control Circuitry

122 Sprite Hardware

Figure 4-13 shows the following:

o Writing to the sprite control registers disables the horizontal comparator circuitry.
This prevents the system from sending any output from the data registers to the
serial converter or to the screen.

o Writing to the sprite A dafa register enables the horizontal comparator. This
enables output to the screen when the horizontal position of the video beam equals
the horizontal value in the position register.

o If the comparator is enabled, the sprite data will be sent to the display, with the

leftmost pixel of the sprite data placed at the position defined in the horizontal part
of SPRxPOS.

o As long as the comparator remains enabled, the current contents of the sprite data
register will be output at the selected horizontal position on a video line.

o The data in the sprite data registers does not change. It is either rewritten by the
user or modified under DMA control.

The components described above produce the automatic DMA display as follows: When:
the sprites are in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH
and SPRxPTL) is used to read the first two words from the sprite data structure. These
words contain the starting and stopping position of the sprite. Next, the pointers write
these words into SPRxPOS and SPRxCTL. After this write, the value in the pointers
points to the address of the first data word (low word of data for line 1 of the sprite.)

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel
will wait until the vertical beam counter value is the same as the data in the VSTART

(Y value) part of SPRxPOS. When these values match, the system enables the sprite
data access.

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is
the location of the line after the last line of the sprite) and VSTART (from SPRxPOS)
to see how many lines of sprite data are to be fetched. Two words are fetched per line
of sprite height, and these words are written into the sprite data registers. The first
word is stored in SPRxDATA and the second word in SPRxDATB.

The fetch and store for each horizontal scan line occurs during a horizontal blanking
interval, far to the left of the start of the screen display. This arms the sprite horizontal
comparators and allows them to start the output of the sprite data to the screen when

the horizontal beam count value matches the value stored in the HSTART (X value)
part of SPRxPOS.

Sprite Hardware 123

If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data
word pair will be fetched, but it will not be stored into the sprite data registers. It will
instead become the next pair of data words for SPRxPOS and SPRxCTL.

When a sprite is used only once within a single display field, the final pair of data words,
which follow the sprite color descriptor words, is loaded automatically as the next con-
tents of the SPRxPOS and SPRxCTL registers. To stop the sprite after that first data
set, the pair of words should contain all zeros.

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced
as pixels automatically under DMA control one line at a time.

Summary of Sprite Registers

There are eight complete sets of registers used to describe the sprites. Each set consists
of five registers. Only the registers for sprite O are described here. All of the others are
the same, except for the name of the register, which includes the appropriate number.

POINTERS

Pointers are registers that are used by the system to point to the current data being
used. During a screen display, the registers are incremented to point to the data being

used as the screen display progresses. Therefore, pointer registers must be freshly writ-
ten during the start of the vertical blanking period.

SPROPTH and SPROPTL

This pair of registers contains the 18-bit word address of Sprite 0 DMA data. These
registers contain the high three bits and low fifteen bits of the address, respectively.

Because these two register addresses are contiguous, 68000 programmers can write a long
word into SPROPTH, as usual.

Pointer register names for the other sprites are:

124 Sprite Hardware

SPR1IPTH SPRI1PTL
SPR2PTH SPR2PTL
SPR3PTH SPR3PTL
SPR4PTH SPR4PTL
SPRSPTH SPRSPTL
SPR6PTH - SPR6PTL
SPR7PTH SPR7PTL

CONTROL REGISTERS

SPROPOS

This is the sprite O position register. The word written into this register controls the
position on the screen at which the upper left-hand corner of the sprite is to be placed.
The most significant bit of the first data word will be placed in this position on the
screen. Note that the sprites have a placement resolution on a full screen of 320 by 200.
The sprite resolution is independent of the bit-plane resolution.

Bit positions:

o Bits 15-8 specify the vertical start position, bits V7 - VO.

o Bits 7-0 specify the horizontal start position, bits H8 - H1.

NOTE

This register is normally only written by the sprite DMA channel itself.
See the details above regarding the organization of the sprite data. This
register is usually updated directly by DMA.

SPROCTL

This register is normally used only by the sprite DMA channel. It contains control infor-
mation that is used to control the sprite data-fetch process.

Sprite Hardware 125

Bit positions:

o Bits 15-8 specify vertical stop position for a sprite image, bits V7 - VO.

o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indi-
cates that sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be con-
sidered as paired, and as such will be called four bits deep. The odd-numbered
(higher number) sprite contains bits with the higher binary significance.

During attach mode, the attached sprites are normally moved horizontally and
vertically together under processor control. This allows a greater selection of
colors within the boundaries of the sprite itself. The sprites, although attached,
remain capable of independent motion, however, and they will assume this
larger color set only when their edges overlay one another.

o Bits 6-3 are reserved for future use (make zero).

o Bit 2 is bit V8 of vertical start.

o Bit 1 is bit V8 of vertical stop.

o Bit 0 is bit HO of horizontal start.

Position and control registers for the other sprites are:

DATA REGISTERS

The following registers, although defined in the address space of the main processor, are
normally used only by the display processor. They are the holding registers for the data

obtained by DMA cycles.

126 Sprite Hardware

SPR1POS
SPR2POS
SPR3POS
SPR4POS
SPR5POS
SPR6POS
SPR7POS

SPR1CTL
SPR2CTL
SPR3CTL
SPR4CTL
SPR5CTL
SPR6CTL
SPR7CTL

SPRODATA, SPRODATB data registers for Sprite 0
SPRIDATA, SPR1IDATB data registers for Sprite 1
'SPR2DATA, SPR2DATB data registers for Sprite 2
SPR3DATA, SPR3DATB data registers for Sprite 3
SPR4DATA, SPR4ADATB data registers for Sprite 4
SPR5DATA, SPR5DATB data registers for Sprite 5
SPR6DATA, SPR6DATB data registers for Sprite 6
SPR7DATA, SPR7DATB data registers for Sprite 7

Summary of Sprite Color Registers

Sprite data words are used to select the color of the sprite pixels from the system color
register set as indicated in the following tables.

If the bit combinations from single sprites are as shown in table 4-6, then the colors will
be taken from the registers shown.

Sprite Hardware 127

Table 4-6: Color Registers for Single Sprites

Single Sprites

Sprite

Oorl

2o0r3

40rd

6or?7

128 Sprite Hardware

Value

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

* Selects transparent mode.

Color
Register

Not used *
17
18
19

Not used *
21
22
23

Not used *
25
26
27

Not used *
29
30
31

If the bit combinations from attached sprites are as shown in table 4-7, then the colors
will be taken from the registers shown.

Table 4-7: Color Registers for Attached Sprites

Attached Sprites

Color

Value Register
0000 Not used *
0001 17
0010 18
0011 19
0100 ' 20
0101 21
0110 22
0111 23
1000 24
1001 25
1010 26
1011 27
1100 28
1101 29
1110 30
1111 31

* Selects transparent mode.

Sprite Hardware 129

Chapter 5

AUDIO HARDWARE

Introduction

This chapter shows you how to directly access the audio hardware to produce sounds.
The major topics in this chapter are:

o A brief overview of how a computer produces sound.

o How to produce simple steady and changing sounds and more complex ones.

Audio Hardware 131

o How to use the audio channels for special effects, wiring them for stereo sound if
desired, or using one channel to modulate another.

o How to-produce quality sound within the system limitations.

A section at the end of the chapter gives you values to use for creating musical notes on
the equal-tempered musical scale.

This chapter is not a tutorial on computer sound synthesis; a thorough description of
creating sound on a computer would require a far longer document. The purpose here is
to point the way and show you how to use the Amiga’s features. Computer sound pro-
duction is fun but complex, and it usually requires a great deal of trial and error on the
part of the user—you use the instructions to create some sound and play it back, read-
just the parameters and play it again, and so on.

The following works are recommended for more information on creating music with com-
puters:

o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley
and Sons, 1980).

o Hal Chamberlain, Musicalepplicatz’ons of Microprocessors (Rochelle Park, New
Jersey: Hayden, 1980).

INTRODUCING SOUND GENERATION

Sound travels through air to your ear drums as a repeated cycle of air pressure varia-
tions, or sound waves. Sounds can be represented as graphs that model how the air
pressure varies over time. The attributes of a sound, as you hear it, are related to the
shape of the graph. If the waveform is regular and repetitive, it will sound like a tone
with steady pitch (highness or lowness), such as a single musical note. Each repetition of
a waveform is called a cycle of the sound. If the waveform is irregular, the sound will
have little or no pitch, like a loud clash or rushing water. How often the waveform
repeats (its frequency) has an eflect upon its pitch; sounds with higher frequencies are
higher in pitch. Humans can hear sounds that have a frequency of between 20 and
20,000 cycles per second. The amplitude of the waveform (highest point on the graph),
is related to the perceived loudness of the sound. Finally, the general shape of the
waveform determines its tone quality, or timbre. Figure 5-1 shows a particular kind of
waveform, called a sine wave, that represents one cycle of a simple tone.

132 Audio Hardware

AMPLITUDE
o

TIME (Msec)
\J

Figure 5-1: Sine Waveform

In electronic sound recording and output devices, the attributes of sounds are
represented by the parameters of amplitude and frequency. Frequency is the number of
cycles per second, and the most common unit of frequency is the Hertz (Hz), which is 1

cycle per second. Large values, or high frequencies, are measured in kilohertz (KHz) or
megahertz (MHz). ‘

Frequency is strongly related to the perceived pitch of a sound. When frequency
increases, pitch rises. This relationship is exponential. An increase from 100 Hz to 200
Hz results in a large rise in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly
noticeable. Musical pitch is represented in octaves. A tone that is one octave higher

than another has a frequency twice as high as that of the first tone, and its perceived
pitch is twice as high.

The second parameter that defines a waveform is its amplitude. In an electronic circuit,
amplitude relates to the voltage or current in the circuit. When a signal is going to a
speaker, the amplitude is expressed in watts. Perceived sound intensity is measured in
decibels (db). Human hearing has a range of about 120 db; 1 db is the faintest audible
sound. Roughly every 10 db corresponds to a doubling of sound, and 1 db is the smal-
lest change in amplitude that is noticeable in a moderately loud sound. Volume, which

is the amplitude of the sound signal which is output, corresponds logarithmically to deci-
bel level.

Audio Hardware 133

The frequency and amplitude parameters of a sine wave are completely independent.
When sound is heard, however, there is interaction between loudness and pitch. Lower-
frequency sounds decrease in loudness much faster than high-frequency sounds.

The third attribute of a sound, timbre, depends on the presence or absence of overtones,
or harmonics. Any complex waveform is actually a mixture of sine waves of different
amplitudes, frequencies, and phases (the starting point of the waveform on the time
axis). These component sine waves are called harmonics. A square waveform, for exam-
ple, has an infinite number of harmonics.

In summary, all steady sounds can be described by their frequency, overall amplitude,
and relative harmonic amplitudes. The audible equivalents of these parameters are
pitch, loudness, and timbre, respectively. Changing sound is a steady sound whose
parameters change over time.

In electronic production of sound, an analog device, such as a tape recorder, records
sound waveforms and their cycle frequencies as a continuously variable representation of
air pressure. The tape recorder then plays back the sound by sending the waveforms to
an amplifier where they are changed into analog voltage waveforms. The amplifier sends
the voltage waveforms to a loudspeaker, which translates them into air pressure vibra-
tions that the listener perceives as sound.

A computer cannot store analog waveform information. In computer production of
sound, a waveform has to be represented as a finite string of numbers. This transforma-
tion is made by dividing the time axis of the graph of a single waveform into equal seg-
ments, each of which represents a short enough time so the waveform does not change a
great deal. Each of the resulting points is called a sample. These samples are stored in
memory, and you can play them back at a frequency that you determine. The computer
feeds the samples to a digital-to-analog converter (DAC), which changes them into an
analog voltage waveform. To produce the sound, the analog waveforms are sent first to
an amplifier, then to a loudspeaker.

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along
with a table of samples for each. Note that the illustrations are not to scale and that
there are fewer dots in the wave forms than there are samples in the table. The ampli-
tude axis values 127 and -128 represent the high and low limits on relative amplitude.

134 Audio Hardware

127 A Sine Waveform 127“ Triangle Waveform 127 A Square Wave

-127 -127 -127
Y Y v
>
Samples taken over time —
TIME SINE SQUARE TRIANGLE
0 0 100 0
1 39 100 20
2 75 100 40
3 103 100 60
4 121 100 80
5 127 100 100
6 121 100 80
7 103 100 60
8 75 100 40
9 39 100 20
10 0 -—100 0
" -39 —100 -20
12 ~75 -100 -40
13 -103 -100 —60
14 -121 -100 -80
15 -127 -100 -100
16 —-121 —-100 —80
17 -103 —100 -60
18 -75 -100 —-40
19 -39 -100 -20

Figure 5-2: Digitized Amplitude Values

THE AMIGA SOUND HARDWARE

The Amiga has four hardware sound channels. You can independently program each of
the channels to produce complex sound effects. You can also attach channels so that one
channel modulates the sound of another or combine two channels for stereo effects.

Audio Hardware 135

Each audio channel includes an eight-bit digital-to-analog converter driven by a direct
memory access (DMA) channel. The audio DMA can retrieve two data samples during
each horizontal video scan line. For simple, steady tones, the DMA can automatically
play a waveform repeatedly; you can also program all kinds of complex sound effects.

There are two methods of basic sound production on the Amiga — automatic (DMA)

sound generation and direct (non-DMA) sound generation. When you use automatic
sound generation, the system retrieves data automatically by direct memory access.

Forming and Playing a Sound

This section shows you how to create a simple, steady sound and play it. Many basic
concepts that apply to all sound generation on the Amiga are introduced in this section.
To produce a steady tone, follow these basic steps:

1. Decide which channel to use.

2. Define the waveform and create the sample table in memory.

3. Set registers telling the system where to find the data and the length of the
data.

4. Select the volume at which the tone is to be played.
5. Select the sampling period, or output rate of the data.

6. Select an audio channel and start up the DMA.

DECIDING WHICH CHANNEL TO USE

The Amiga has four audio channels. Channels O and 3 are connected to the left-side
stereo output jack. Channels 1 and 2 are connected to the right-side output jack.
Select a channel on the side from which the output is to appear.

136 Audio Hardware

CREATING THE WAVEFORM DATA

The waveform used as an example in this section is a simple sine wave, which produces a
pure tone. To conserve memory, you normally define only one full cycle of a waveform
in memory. For a steady, unchanging sound, the values at the waveform’s beginning
and ending points and the trend or slope of the data at the beginning and end should be
closely related. This ensures that a continuous repetition of the waveform sounds like a
continuous stream of sound.

Sound data is organized as a set of eight-bit data items; each item is a sample from the
waveform. Each data word retrieved for the audio channel consists of two samples.
Sample values can range from -128 to +127.

As an example, the data set shown below produces a close approximation to a sine wave.
Note that the data is stored in byte address order with the first digitized amplitude
value at the lowest byte address, the second at the next byte address, and so on. Also,
note that the first byte of data must start at a word-address boundary. This is because
the audio DMA retrieves one word (16 bits) at a time and uses the sample it reads as
two bytes of data.

To use audio channel 0, write the address of ‘“audiodata” into AUDOLC, where the
audio data is organized as shown below. For simplicity, “AUDxLC” in the table below
stands for the combination of the two actual location registers (AUDxLCH and
AUDXLCL). For the audio DMA channels to be able to retrieve the data, the data
address to which AUDOLC points must be located in the low 512K bytes of RAM.

Audio Hardware 137

Table 5-1: Sample Audio Data Set for Channel 0

audiodata ---> AUDOLC =* 100 98
AUDOLC + 2 ** 92 83
AUDOLC + 4 , 71 56
AUDOLC + 6 38 20
AUDOLC + 8 0 -20
AUDOLC + 10 -38 -b6
AUDOLC + 12 -71 -83
AUDOLC + 14 -92 -83
AUDOLC + 16 -100 -98
AUDOLC + 18 -92 -83
AUDOLC + 20 -71 -56
AUDOLC + 22 -38 -20
AUDOLC + 24 0 20
AUDOLC + 26 38 56
AUDOLC + 28 71 83
AUDOLC + 30 92 g8
Notes

* Audio data is located on a word-address boundary.

#* AUDOLC stands for AUDOLCL and AUDOLCH.

TELLING THE SYSTEM ABOUT THE DATA

In order to retrieve the sound data for the audio channel, the system needs to know
where the data is located and how long (in words) the data is.

The location registers AUDXLCH and AUDXLCL contain the high three bits and the low
fifteen bits, respectively, of the starting address of the audio data. Since these two regis-
ter addresses are contiguous, writing a long word into AUDXLCH moves the audio data
address into both locations. The “x” in the register names stands for the number of the
audio channel where the output will occur. The channels are numbered 0, 1, 2, and 3.

These registers are location registers, as distinguished from pointer registers. You need
to specify the contents of these registers only once; no resetting is necessary when you
wish the audio channel to keep on repeating the same waveform. Each time the system
retrieves the last audio word from the data area, it uses the contents of these location
registers to again find the start of the data. Assuming the first word of data starts at

138 Audio Hardware

location “audiodata’ and you are using channel 0, here is how to set the location regis-
ters:

AUDOLC EQU AUDOLCH ;AUDOLC stands for AUDOLCL
WHEREODATA:
LEA AUDIODATA, A0
MOVE.L A0, AUDOLC ;Put address (82 bits)

; tnto location register.

The length of the data is the number of samples in your waveform divided by 2, or the
number of words in the data set. Using the sample data set above, the length of the
data is 16 words. You write this length into the audio data length register for this chan-
nel. The length register is called AUDXLEN, where “x’’ refers to the channel number.
You set the length register AUDOLEN to 16 as shown below.

SETAUDOLENGTH: MOVE.W #16, AUDOLEN

SELECTING THE VOLUME

The volume you set here is the overall volume of all the sound coming from the audio
channel. The relative loudness of sounds, which will concern you when you combine
notes, is determined by the amplitude of the wave form. There is a six-bit volume regis-
ter for each audio channel. To control the volume of sound that will be output through
the selected audio channel, you write the desired value into the register AUDxVOL,
where “x” is replaced by the channel number. You can specify values from 64 to 0.
These volume values correspond to decibel levels. At the end of this chapter is a table
showing the decibel value for each of the 65 volume levels. For a typical output at
volume 64, with maximum data values of -128 to 127, the voltage output is between +.4
volts and -.4 volts. Some volume levels and the corresponding decibel values are shown
in table 5-2.

Audio Hardware 139

Table 5-2: Volume Values

Volume Decibel Value

64 0 (maximum volume)
48 -2.5

32 -6.0

16 -12.0 (12 db down from the

volume at maximum level)

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL.
For example:

SET AUDOVOLUME: MOVE.W #48, AUDOVOL

The decibels are shown as negative values from a maximum of 0 because this is the way
a recording device, such as a tape recorder, shows the recording level. Usually, the
recorder has a dial showing 0 as the optimum recording level. Anythmg less than the
optimum value is shown as a minus quantity.

SELECTING THE DATA OUTPUT RATE

The pitch of the sound produced by the waveform depends upon its frequency. To tell
the system what frequency to use, you need to specify the sampling period. The sam-
pling period specifies the number of system clock ticks, or timing intervals, that should
elapse between each sample (byte of audio data) fed to the digital-to-analog converter in
the audio channel. There is a period register for each audio channel. The value of the
period register is used for count-down purposes; each time the register counts down to 0,
another sample is retrieved from the waveform data set for output. In units, the period
value represents clock ticks per sample. The minimum period value you should use is
124 ticks per sample and the maximum is 65535. For high-quality sound, there are other
constraints on the sampling period (see the section called “Producing High-quality
Sound”). Note that a low period value corresponds to a higher frequency sound and a
high period value corresponds to a lower frequency sound.

140 Audio Hardware

Limitations on Selection of Sampling Period

The sampling period is limited by the number of DMA cycles allocated to an audio chan-
nel. Each audio channel is allocated one DMA slot per horizontal scan line of the screen
display. An audio channel can retrieve two data samples during each horizontal scan
line. The following calculation gives the maximum sampling rate in samples per second.

2 samples/line X 262.5 lines/frame X 59.94 frames/second = 31,469 samples/second

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is
designed to handle 28,867 samples/second. The system timing interval is 279.365
nanoseconds, or .279365 microseconds. The maximum sampling rate of 28,867 samples

per second is 34.642 microseconds per sample (1/28,867 = .000034642). The formula for
calculating the sampling period is

Period value = sample interval]clock interval

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample
by the number of microseconds per interval:

34.642 microseconds/sample

Minimum period =
0.279365 microseconds/interval

= 124 timing intervals/sample

Therefore, a value of at least 124 must be written into the period register to assure that
the audio system DMA will be able to retrieve the next data sample. If the period value
is below 124, by the time the cycle count has reached 0, the audio DMA will not have

had enough time to retrieve the next data sample and the previous sample will be
reused.

Specifying the Period Value

After you have selected the desired interval between data samples, you can calculate the
value to place in the period register by using the period formula:

Period value = desired interval/clock interval

Audio Hardware 141

As an example, say you wanted to produce a 1 KHz sine wave, using a table of eight
data samples (four data words) (see figure 5-3).

127

-127

Figure 5-3: Example Sine Wave

Sampled Values: 0
90

127

90

-90

=127
-90

142 Audio Hardware

- To output the series of eight samples at 1 KHz (1,000 cycles per second), each full cycle
is output in 1/1000th of a second. Therefore, each individual value must be retrieved in
1/8th of that time. This translates to 1,000 microseconds per waveform or 125
microseconds per sample. To correctly produce this waveform, the period value should
be

125 microseconds/sample

Period value =
0.279365 microseconds/interval

= 447 timing intervals/sample

To set the period register, you must write the period value into the register AUDXPER,
where “x” is the number of the channel you are using. For example, the following

instruction shows how to write a period value of 447 into the period register for chan-
nel 0.

SETAUDOPERIOD: MOVE.W #447, AUDOPER

To produce high-quality sound, avoiding aliasing distortion, you should observe the limi-
tations on period values that are discussed in the section below called “Producing Qual-
ity Sound.”

For the relationship between period and musical pitch, see the section at the end of the
chapter, which contains a listing of the equal-tempered musical scale.

PLAYING THE WAVEFORM

After you have defined the audio data location, length, volume and period, you can play
the waveform by starting the DMA for that audio channel. This starts the output of
sound. Once started, the DMA continues until you specifically stop it. Thus, the
waveform is played over and over again, producing the steady tone. The system uses
the value in the location registers each time it replays the waveform.

To start the channel, you write a 1 into the AUDXEN bit of the DMA control register

named DMACON. To start the DMA, you write a 1 into the DMAEN bit of DMACON.
All these bits and their meanings are shown in table 5-3.

Audio Hardware 143

Table 5-3: DMA and Audio Channel Enable Bits

DMACON Register
Bit Name Function

15 SETCLR When this bit is written as a 1, it
sets any bit in DMACONW for which
the corresponding bit position is
also a 1, leaving all other bits alone.

9 DMAEN Only while this bit is a 1 can
any direct memory access occur.

~AUD3EN Audio channel 3 enable.
AUD2EN Audio channel 2 enable.
AUDIEN Audio channel 1 enable.
AUDOEN Audio channel 0 enable.

O =W

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA
and a 1 into bit O to enable the audio channel, as shown below.

SET EQU $08000
AUDOEN EQU $01
DMAEN EQU $0200

BEGINCHANO:
MOVE.W #(SET 4+ AUDOEN + DMAEN), DMACONW

STOPPING THE AUDIO DMA

You can stop the channel by writing a 0 into the AUDXEN bit at any time. However,
you cannot resume the output at the same point in the waveform by just writing a 1 in
the bit again. Enabling an audio channel almost always starts the data output again
from the top of the list of data pointed to by the location registers for that channel. If
the channel is disabled for a very short time (less than two sampling periods) it may stay
on and thus continue from where it left off.

144 Audio Hardware

The following example shows how to stop audio DMA for one channel.

CLEAR EQU 0

STOPAUDCHANO:

MOVE.W #(CLEAR + AUDOEN), DMACONW

SUMMARY

These are the steps necessary to produce a steady tone:

1. Define the waveform.
2. Create the data set containing the pairs of data samples (data words). Nor-
mally, a data set contains the definition of one waveform.
3. Set the location registers:
AUDXLCH (high three bits)
AUDXLCL (low fifteen bits)
4. Set the length register, AUDXLEN, to the number of data words to be retrieved
before starting at the address currently in AUDxLC.
5. Set the volume register, AUDxVOL.
6. Set the period register, AUDxPER
7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the
SETCLR bit and a 1 in the position of the AUDXEN bit of the channel or chan-
nels you want to start.
EXAMPLE

In this example, which gathers together all of the program segments from the preceding
sections, a sine wave is played through channel 0.

Audio Hardware 145

AUDOLC EQU

SET EQU
CLEAR EQU
AUDOEN EQU
DMAEN EQU
DS.W
SINEDATA:
DC.B
MAIN:
LEA
WHEREODATA:
MOVE.L
SETAUDOLENGTH:
MOVE.W
SETAUDOVOLUME:
MOVE.W
SETAUDOPERIOD:
MOVE.W
BEGINCHANO:
MOVE.W
END

146 Audio Hardware

AUDOLCH
$08000

0

$01

$0200

0 ;Be sure word-aligned
0, 90, 127, 90, 0, -90, -127, -90

SINEDATA, A0 ;Address of data to
; audio location register 0

A0, AUDOLC ;The 68000 writes
; this as though it were
;i a 82-bit register at the
; low-bits location
; (common to all locations
; and pointer registers
; in the system).

#4, AUDOLEN ;Set length in words
#64, AUDOVOL ;Use mazimum volume
#447, AUDOPER

#(SET + DMAEN + AUDOEN), DMACONW

Producing Complex Sounds

In addition to simple tones, you can create more complex sounds, such as different musi-
cal notes joined into a one-voice melody, different notes played at the same time, or
modulated sounds.

JOINING TONES

Tones are joined by writing the location and length registers, starting the audio output,
and rewriting the registers in preparation for the next audio waveform that you wish to
connect to the first one. This is made easy by the timing of the audio interrupts and the
existence of back-up registers. The location and length registers are read by the DMA
channel before audio output begins. The DMA channel then stores the values in back-
up registers. Once the original registers have been read by the DMA channel, you can
change their values without disturbing the operation you started with the original regis-
ter contents. Thus, you can write the contents of these registers, start an audio output,
and then rewrite the registers in preparation for the next waveform you want to connect
to this one.

Interrupts occur immediately after the audio DMA channel has read the location and
length registers and stored their values in the back-up registers. Once the interrupt has
occurred, you can rewrite the registers with the location and length for the next
waveform segment. This combination of back-up registers and interrupt timing lets you

keep one step ahead of the audio DMA channel, allowing your sound output to be con-
tinuous and smooth.

If you do not rewrite the registers, the current waveform will be repeated. Each time
the length counter reaches zero, both the location and length registers are reloaded with
the same values to continue the audio output.

Example

This example details the system audio DMA action in a step-by-step fashion.

Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a
special audio effect, alternating between them. The following sequence shows the action
of your program as well as its interaction with the audio DMA system. The example
assumes that the period, volume, and length of the data set remains the same for the
sine wave and the triangle wave.

Audio Hardware 147

If (wave = triangle)
write AUDOLCL with address of sine wave data.

Else if (wave = sine)
write AUDOLCL with address of triangle wave data.

Main Program

1. Set up volume, period, and length.
2. Write AUDOLCL with address of sine wave data.

3. Start DMA.

4. Continue with something-else.

System Response

As soon as DMA starts,
a. Copy to “back-up” length register from AUDOLEN.

b. Copy to “back-up” location register from AUDOLCL (will be used as a pointer
showing current data word to fetch).

¢. Create an interrupt for the 68000 saying that it has completed retrieving work-
ing copies of length and location registers.

d. Start retrieving audio data each allocated DMA time slot.

148 Audio Hardware

PLAYING MULTIPLE TONES AT THE SAME TIME

You can play multiple tones either by using several channels independently or by sum-
ming the samples in several data sets, playing the summed data sets through a single
channel.

Since all four audio channels are independently programmable, each channel has its own
data set; thus a different tone or musical note can be played on each channel.

MODULATING SOUND

To provide more complex audio effects, you can use one audio channel to modulate
another. This increases the range and type of eflects that can be produced. You can
modulate a channel’s frequency or amplitude, or do both types of modulation on a chan-
nel at the same time.

Amplitude modulation affects the volume of the waveform. It is often used to produce
vibrato or tremolo effects. Frequency modulation affects the period of the waveform.
Although the basic waveform itself remains the same, the pitch is increased or decreased
by frequency modulation.

The system uses one channel to modulate another when you attach two channels. The
attach bits in the ADIKKCON register control how the data from an audio channel is
interpreted (see the table below). Normally, each channel produces sound when it is
enabled. If the “attach” bit for an audio channel is set, that channel ceases to produce
sound and its data is used to modulate the sound of the next higher-numbered channel.
When a channel is used as a modulator, the words in its data set are no longer treated
as two individual bytes. Instead, they are used as “modulator” words. The data words
from the modulator channel are written into the corresponding registers of the modulated
channel each time the period register of the modulator channel times out.

To modulate only the amplitude of the audio output, you must attach a channel as a

volume modulator. Define the modulator channel’s data set as a series of words, each
containing volume information in the following format:

Audio Hardware 149

Bits Function
15-7 Not used

6-0 Volume information, V6 - VO

To modulate only the frequency, you must attach a channel as a period modulator.
Define the modulator channel’s data set as a series of words, each containing period
information in the following format:

Bits Function

15-0 Period information, P15 - PO

If you want to modulate both period and volume on the same channel, you need to
attach the channel as both a period and volume modulator. For instance, if channel 0 is
used to modulate both the period and frequency of channel 1, you set two attach bits —
bit 0 to modulate the volume and bit 4 to modulate the period. When period and
volume are both modulated, words in the modulator channel’s data set are defined alter-
nately as volume and period information.

The sample set of data in table 5-4 shows the differences in interpretation of data when
a channel is used directly for audio, when it is attached as volume modulator, when it is

attached as a period modulator, and when it is attached as a modulator of both volume
and period.

Table 5-4: Data Interpretation in Attach Mode‘

Independent Modulating
Data (not Both Modulating Modulating
Words Modulating) Period and Volume Period Only Volume Only
Word 1 | data | data| | volume for other channel | | period | | volume |
Word 2 | data | data | | period for other channel | | period | | volume |
Word 3 | data | data| | volume for other channel | | period | | volume |
Word 4 | data | data| | period for other channel | | period | | volume |

150 Audio Hardware

The lengths of the data sets of the modulator and the modulated channels are com-
pletely independent.

Channels are attached by the system in a predetermined order, as shown in table 5-5.
To attach a channel as a modulator, you set its attach bit to 1. If you set either the
volume or period attach bits for a channel, that channel’s audio output will be disabled;
the channel will be attached to the next higher channel, as shown in table 5-5. Because
an attached channel always modulates the next higher numbered channel, you cannot
attach channel 3. Writing a 1 into channel 3’s modulate bits only disables its audio out-
put.

Table 5-5: Channel Attachment for Modulation

ADKCON Register

Bit Name Function

7 ATPER3 Use audio channel 3 to modulate nothing
(disables audio output of channel 3)

6 ATPER2 Use audio channel 2 to modulate period
of channel 3

5 ATPER1 Use audio channel 1 to modulate period
of channel 2

4 ATPERO Use audio channel 0 to modulate period
of channel 1

3 ATVOL3 Use audio channel 3 to modulate nothing
(disables audio output of channel 3)

o

ATVOL2 Use audio channel 2 to modulate volume
of channel 3

1 ATVOL1 Use audio channel 1 to modulate volume
of channel 2

0 ATVOLO Use audio channel 0 to modulate volume
of channel 1

Audio Hardware 151

Producing High-quality Sound

When trying to create high-quality sound, you need to consider the following factors:
o Waveform transitions.
o Sampling rate.
o Efficiency.
o Noise reduction.
o Avoidance of aliasing distortion.

o Limitations of the low pass filter.

MAKING WAVEFORM TRANSITIONS

To avoid unpleasant sounds when you change from one waveform to another, you need
to make the transitions smooth. You can avoid “clicks” by making sure the waveforms
start and end at approximately the same value. You can avoid “pops” by starting a
waveform only at a zero-crossing point. You can avoid “thumps” by arranging the aver-
age amplitude of each wave to be about the same value. The average amplitude is the
sum of the bytes in the waveform divided by the number of bytes in the waveform.

SAMPLING RATE

If you need high precision in your frequency output, you may find that the frequency
you wish to produce is somewhere between two available sampling rates, but not close
enough to either rate for your requirements. In those cases, you may have to adjust the
length of the audio data table in addition to altering the sampling rate.

For higher frequencies, you may also need to use audio data tables that contain more
than one full cycle of the audio waveform to reproduce the desired frequency more accu-
rately, as illustrated in figure 5-4.

152 Audio Hardware

128 Always requires an even

/\ number of samples —
/\v \/ .
-127

' >
Samples taken over time —

Shows a case in which a high-frequency waveform may need more than one full cycle to accurately
reproduce the periodic waveform

Figure 5-4: Waveform with Multiple Cycles

EFFICIENCY

A certain amount of overhead is involved in the handling of audio DMA. If you are try-
ing to produce a smooth continuous audio synthesis, you should try to avoid as much of
the system control overhead as possible. Basically, the larger the audio buffer you pro-
vide to the system, the less often it will need to interrupt to reset the pointers to the top
of the next buffer and, coincidentally, the lower the amount of system interaction that
will be required. If there is only one waveform buffer, the hardware automatically resets
the pointers, so no software overhead is used for resetting them.

The “Joining Tones” section illustrated how you could join “ends” of tones together by
responding to interrupts and changing the values of the location registers to splice tones
together. If your system is heavily loaded, it is possible that the response to the inter-
rupt might not happen in time to assure a smooth audio transition. Therefore, it is
advisable to utilize the longest possible audio table where a smooth output is required.
This takes advantage of the audio DMA capability as well as minimizing the number of
interrupts to which the 68000 must respond.

Audio Hardware 153

NOISE REDUCTION

To reduce noise levels and produce an accurate sound, try to use the full range of -128
to 127 when you represent a waveform. This reduces how much noise (quantization
error) will be added to the signal by using more bits of precision. Quantization noise is
caused by the introduction of round-off error. If you are trying to reproduce a signal,
such as a sine wave, you can represent the amplitude of each sample with only so many
digits of accuracy. The difference between the real number and your approximation is
round-off error, or noise.

By doubling the amplitude, you create half as much noise because the size of the steps of
the wave form stays the same and is therefore a smaller fraction of the amplitude. In
other words, if you try to represent a waveform using, for example, a range of only +3
to -3, the size of the error in the output would be considerably larger than if you use a
range of +127 to -128 to represent the same signal. Proportionally, the digital value
used to represent the waveform amplitude will have a lower error. As you increase the
number of possible sample levels, you decrease the relative size of each step and, there-
fore, decrease the size of the error.

To produce quiet sounds, continue to define the waveform using the full range, but
adjust the volume. This maintains the same level of accuracy (signal-to-noise ratio) for
quiet sounds as for loud sounds.

ALTASING DISTORTION

When you use sampling to produce a waveform, a side effect is caused when the sam-
pling rate “beats” or combines with the frequency you wish to produce. This produces
two additional frequencies, one at the sampling rate plus the desired frequency and the

other at the sampling rate minus the desired frequency. This phenomenon is called
aliasing distortion.

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by
at least 7 KHz. This puts the beat frequency outside the range of the low-pass filter,
cutting off the undesirable frequencies. Figure 5-5 shows a frequency domain plot of the
anti-aliasing low-pass filter used in the system.

154 Audio Hardware

Odb

Filter response

—30db | | |
5kHz 10kHz 15kHz 20kHz 25kHz 30kHz

| -

Filter passes all frequencies below about 5 kHz.

Figure 5-5: Frequency Domain Plot of Low-Pass Filter

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4
KHz waveform. Both of the beat frequencies are outside the range of the filter, as shown
in these calculations:

12 + 4 =16 KHz
12- 4 = 8 KHz

f Filter response
0db 12 kHz sampling frequency

Diff. Sum

4 kHz
—-30db | l ” I I >

SkHz 10kHz 15kHz 20kHz 25kHz 30kHz

Desired output frequency

Figure 5-6: Noise-free Output (No Aliasing Distortion)

Audio Hardware 155

You can see in figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce
a 4 KHz waveform. One of the beat frequencies (10 - 4) is within the range of the filter,
allowing some of that undesirable frequency to show up in the audio output.

* Filter response

0db 10 kHz sampling frequency

Diff. Sum

4 kHz
~30db) | n [>

5kHz 10kHz 15kHz 20kHz 25kHz 30kHz

Desired output frequency

Figure 5-7: Some Aliasing Distortion

All of this gives rise to the following equation, showing that the sampling frequency
must exceed the output frequency by at least 7 KHz, so that the beat frequency will be
above the cutofl range of the anti-aliasing filter:

Minimum sampling rate = highest frequency component + 7 KHz

The frequency component of the equation is stated as ‘‘highest frequency component”

because you may be producing a complex waveform with multiple frequency elements,
rather than a pure sine wave.

LOW-PASS FILTER

The system includes a low-pass filter that eliminates aliasing distortion as described
above. This filter becomes active around 4 KHz and gradually begins to attenuate (cut
off) the signal. Generally, you cannot clearly hear frequencies higher than 7 KHz.
Therefore, you get the most complete frequency response in the frequency range of 0 - 7
KHz. If you are making frequencies from 0 to 7 KHz, you should select a sampling rate
no less than 14 KHz, which corresponds to a sampling period in the range 124 to 256.

156 Audio Hardware

At a sampling period around 320, you begin to lose the higher frequency values between
0 KHz and 7 KHz, as shown in table 5-6.

Table 5-6: Sampling Rate and Frequency Relationship

Sampling Sampling Maximum Output
Period Rate (KHz) Frequency (KHz)

Maximum sampling rate 124 29 7

Minimum sampling rate 256 14 7
for 7 KHz output

Sampling rate too low 320 11 4
for 7 KHz output

Using Direct (Non-DMA) Audio Output

It is possible to create sound by writing audio data one word at a time to the audio out-
put addresses, instead of setting up a list of audio data in memory. This method of con-
trolling the output is more processor-intensive and is therefore not recommended.

To use direct audio output, do not enable the DMA for the audio channel you wish to
use; this changes the timing of the interrupts. The normal interrupt occurs after a data
address has been read; in direct audio output, the interrupt occurs after one data word
has been output.

Unlike in the DMA-controlled automatic data output, in direct audio output, if you do
not write a new set of data to the output addresses before two sampling intervals have
elapsed, the audio output will cease changing. The last value remains as an output of
the digital-to-analog converter.

The volume and period registers are set as usual.

Audio Hardware 157

The Equal-tempered Musical Scale

This section gives a close approximation of the equal-tempered scale. The ‘“Period”
column gives the period count you enter into the period register.

See the explanatory notes following this table for determining AUDXLEN value.

Table 5-7: The Equal-tempered Scale

Period Note Ideal Actual
Frequency Frequency
(with AUDXLEN=8) (with AUDXLEN=S)

508 A 440.0 440.4
480 A# 466.2 466.1
453 B 493.9 493.9
428 C 523.3 522.7
404 C# 554.4 553.8
381 D 587.3 587.2
360 D# 622.3 621.4
339 E 659.3 659.9
320 F 698.5 699.1
302 F# 740.0 740.8
285 G 784.0 785.0
269 G# 830.6 831.7
254 A 880.0 880.8
240 A# 932.3 932.2
226 B 0878 089.9
214 C 1046.5 1045.4
202 C# 1108.7 1107.5
190 D 11747 1177.5
180 D# 1244.5 1242.9
170 E 13185 1316.0
160 F 1396.9 1398.3
151 F# 1480.0 1481.6
143 G 1568.0 1564.5
135 G# 1661.2 1657.2

158 Audio Hardware

Notes for table 5-7:

In this scale, the frequency for the note A is 440.0 Hz and A# is the twelfth root of
2 (1.059463) times higher in frequency than A. The note B is the twelfth root of 2
higher than A#. This is followed by C, C#, D, D#, E, F, F#, G, and G#, and
goes back to A at 880.0 Hz, an octave higher, and so on. Use this scale for
waveforms where the fundamental is 2 to the nth bytes long and where n is an
integer. For example, for A at 440.0 Hz with a period of 508, the sample table con-
tains 16 samples per cycle:

3579545 clocks/second

= 16 samples/cycle
508 clocks/sample X 440 cycles/second

=924
n=4
It follows that for A at 440.0 Hz with a period of 254, the sample table has to con-
tain 32 samples per cycle (AUDXLEN = 16).
The general rule is that doubling the sampling frequency (halving the sampling
period) changes the octave of the note being played. Thus, if you play a C at a
sampling period of 256, then playing the same note with a sampling period of 128

gives a C an octave higher.

Before using the lower octaves in this table, be sure to read the section called “Alias-
ing Distortion.”

Audio Hardware 159

Decibel Values for Volume Ranges

Table 5-8 provides the corresponding decibel values for the volume ranges of the Amiga
system.

Table 5-8: Decibel Values and Volume Ranges

Volume Decibel Value Volume Decibel Value
64 0.0 32 -6.0
63 -0.1 31 -6.3
62 -0.3 30 -6.6
61 -0.4 29 -6.9
60 -0.6 28 =72
59 -0.7 27 7.5
58 -0.9 26 -7.8
57 -1.0 25 -8.2
56 -1.2 24 -8.5
55 -1.3 23 -8.9
54 -1.5 22 -9.3
53 -1.6 21 -9.7
52 -1.8 20 -10.1
51 2.0 19 -10.5
50 -2.1 18 -11.0
49 -2.3 17 -11.5
48 2.5 16 . -120
47 2.7 15 -12.6
46 -2.9 14 -13.2
45 -3.1 13 -13.8
44 -3.3 12 -14.5
43 -3.5 11 -15.3
42 3.7 10 -16.1
41 -3.9 9 -17.0
40 -4.1 8 -18.1
39 -4.3 7 -19.2
38 -4.5 6 -20.6
37 -4.8 5 -22.1
36 -5.0 4 -24.1
35 -5.2 3 -26.6
34 -5.5 2 -30.1
33 -5.8 1 -36.1

0 Minus infinity

150 Audio Hardware

The Audio State Machine

For an explanation of the various states, refer to figure 5-8. There is one audio state
machine for each channel. The machine has eight states and is clocked at the system
clock frequency of 3.58 MHz. Three of the states are basically unused and just transfer
back to the idle (000) state. One of the paths out of the idle state is designed for
interrupt-driven operation (processor provides the data), and the other path is designed
for DMA-driven operation (the “Agnus” special chip provides the data).

In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs
immediately after data is written by the processor. In the 010 state the upper byte is
output, and in the 011 state the lower byte is output. Transitions such as
010—011—010 occur whenever the period counter counts down to one. The period
counter is reloaded at these transitions. As long as the interrupt is cleared by the pro-
cessor in time, the machine remains in the main loop. Otherwise, it enters the idle state.
Interrupts are generated on every word transition (011—010).

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent
to Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data
word must be thrown away. State 101 is entered as soon as this word arrives; a request
for the next data word has already gone out. When the data arrives, state 010 is
entered and the main loop continues until the DMA is turned off. The length counter
counts down once with each word that comes in. When it finishes, a DMA restart
request goes to Agnus along with the regular DMA request. This tells Agnus to reset the
pointer to the beginning of the table of data. Also, the length counter is reloaded and
an interrupt request goes out soon after the length counter finishes (counts to one). The
request goes out just as the last word of the waveform starts its output.

DMA requests and restart requests are transferred to Agnus once each horizontal line,
and the data comes back about 14 clock cycles later (the duration of a clock cycle is
280 ns).

In attach mode, things run a little differently. In attach volume, requests occur as they
do in normal operation (on the 011—010) transition). In attach period, a set of requests
occurs on the 010—011 transition. When both attach period and attach volume are
high, requests occur on hoth transitions.

If the sampling rate is set much higher than the normal maximum sampling rate
(approximately 29 KHz), the two samples in the buffer register will be repeated. If the
filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature
can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in
the memory map, with plus values in the even bytes and minus values in the odd bytes.

Audio Hardware 161

AUDxON
AUDxIP

AUDxIR

intreql

intreq2

AUDxDAT
AUDxDR
AUDxDSR
dmasen

percntrld

percount
perfin
lencntrld
lencount
lenfin
volentrld
pbufldl

pbufld2

The symbols used in the state diagram are explained in the following list. Upper-case
names indicate external signals; lower-case names indicate local signals.

DMA on “x” indicates channel number (signal from DMACON).
Audio interrupt pending (input to channel from interrupt circuitry).

Audio interrupt request (output from channel to interrupt
circuitry)

Interrupt request that combines with intreq2 to form AUDxIR..

Prepare for interrupt request. Request comes out after the next
011—010 transition in normal operation.

Audio data load signal. Loads 16 bits of data to audio channel.
Audio DMA request to Agnus for one word of data.
Audio DMA request to Agnus to reset pointer to start of block.

Restart request enable.

Reload period counter from back-up latch typically written by pro-
cessor with AUDXPER (can also be written by attach mode).

Count period counter down one latch.

Period counter finished (value = 1).

Reload length counter from back-up latch.

Count length counter down one notch.

Length counter finished (value = 1).

Reload volume counter from back-up latch.

Load output bufler from holding latch written to by AUDxDAT.

Like pbufldl, but only during 010—011 with attach period.

162 Audio Hardware

AUDxAV

AUDxAP

penhi

napnav

sq2,1,0

Attach volume. Send data to volume latch of next channel instead
of to D—A converter.

Attach period. Send data to period latch of next channel instead of
to the D—A converter.

Enable the high 8 bits of data to go to the D—A converter.

/AUDXAV * /AUDXAP + AUDxAV—no attach stuff or else attach
volume. Condition for normal DMA and interrupt requests.

The name of the state flip-flops, MSB to LSB.

Audio Hardware 163

only when LENFIN=1.

NOTE: Except for this case, dmasen is true
‘. Also, AUDXDSF=AUDXDR + dmasen

[}
\
\
\
\
\

{perentrid} (AUDXON)

[percount}

> AUDXDR, ¢

é\\‘\ {perentrid) "’a,% percntrid,

&

{pen}

{AUDXON}

{AUDXON}

Brackets |] indicate action on condition

Parentheses (} indicate cause of state transition

[percount] [penhi]

Figure 5-8: Audio State Diagram

164 Audio Hardware

Chapter 6

BLITTER HARDWARE

Introduction

The blitter is a high-performance graphics engine that uses up to four DMA channels.
The operations it performs after a set-up of its registers are considerably faster than
those performed by the 68000. The blitter can be used for data copying. It includes
features to facilitate copying and processing of “rectangular” regions of memory. Typi-
cally, these regions are areas within graphics images. The blitter also does line drawing.
The process of performing a blitter operation is sometimes called a blit.

Blitter Hardware 165

The blitter uses up to four DMA channels. Three DMA channels are dedicated to
retrieving data from memory to the blitter. These are designated as source A, source B,
and source C. The one destination DMA channel is designated as destination D. As is
shown in the following sections, it is not always necessary to use all the sources, nor is it
always appropriate to use the destination DMA channel.

Each channel may be independently enabled by bits 11, 10, 9, and 8 of BLTCONO.
These are called USEA, USEB, USEC, and USED. All three sources (if enabled) are '
fetched from memory in a pipelined fashion and held in registers for logic combination
before being sent to the destination. Each channel has its own memory pointer register
and its own modulo register.

A quick summary of blitter features and operations follows. Each of these topics is dis-
.cussed in this chapter. The reader is also referred to the descriptions of registers whose
names start with “BLT” in appendix A.

o DATA COPYING - The blitter can copy bit-plane image data anywhere in the
lower 512K of memory.

o MULTIPLE POINTERS AND MODULOS - The blitter is provided with a
separate pointer and modulo register for each of the sources and for the destina-
tion. This allows the blitter to move data to and from identical rectangular
windows within different sizes of larger playfield images.

o ASCENDING AND DESCENDING ADDRESSING - The blitter can change
addresses in an ascending or descending manner. That is, it can either start at
the bottom address of both the source and the destination areas and move the
data while incrementing addresses or start at the top address of the source and
destination and decrement addresses during the move.

o RECTANGULAR AND LINEAR ADDRESS SCANNING - The blitter can pro-
cess either linear or rectangular regions.

o LOGIC OPERATIONS - Instead of simply retrieving data from a single source,
the blitter can retrieve data from up to three sources as it prepares the result for
a possible destination area. Before a blit is started, the blitter is set up to per-

form one out of 256 possible logic operations on the three data sources as they
are being transferred.

o SHIFTING - The blitter can shift one or two of its data sources up to 15 bits

before applying it to the logic operation, allowing movement of images in
memory across word boundaries.

166 Blitter Hardware

o MASKING - The blitter can mask the leftmost and rightmost data word from
each horizontal line. Mask registers are provided for the first and the last words
on every line of blitter data. This allows logic operations on bit-boundaries from
both the left and the right edge of a rectangular region.

o ZERO DETECTION - The blitter can store the result of the logic operations
back into memory or simply sense whether there were any 1 bits present as a
result of the logic operation. This feature can be used for hardware-assisted
software collision detection.

o AREA-FILLING - The blitter can perform a hardware-assisted area fill between
pre-drawn lines.

o LINE-DRAWING - The blitter can draw ordinary lines at any angle and can
also apply a pattern to the lines it draws. It can also draw special lines with one
pixel dot per horizontal line (a special mode needed for use with the blitter fill
operation).

Data Copying

The primary purpose of the blitter is to copy (transfer) data in large blocks from one
memory location to another, with or without processing. The name “blitter” stands for
“block image transferrer.”

Images in memory are usually stored in a linear fashion; each word of data on a line is

located at an address that is one greater than the word on its left. (See figure 6-1).
Note that each line is a “plus one’’ continuation of the previous line.

Blitter Hardware 167

201 21|22 (23 (24|24 | 26
27 (2829130 31| 32|33
34 3|36} 37 |3 39| 40
41| 42| 43 | 44 | 45 | 46 | 47
48 | 49 (50 | 51 | 62 | 63 | 54
b5 | 66 | 67 | 568 | 69 | 60 | 61

Figure 6-1: How Images are Stored in Memory

The map in figure 6-1 represents a single bit-plane (one bit of color) of an image at word
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a sin-
gle bit-plane. If this image required sixteen colors, four bit-planes like this would be
required in memory, and four copy (move) operations would be required to completely
move the image.

The blitter is very efficient at copying such blocks because it needs to be told only the
starting address (20), the destination address, and the size of the block (height = 6,
width = 7). It will then automatically move the data, one word at a time, whenever the
data bus is available. When the transfer is complete, the blitter will signal the processor
with a flag and an interrupt.

Note that this copy (move) operation operates on memory and may or may not change
the memory currently being used for display.

Pointers and Modulos

Pointer registers are used to point to the address in memory where the next word of
source or destination data is located. Because pointer registers must address 512 Kbytes
of memory, they occupy two 16-bit addresses. For example, the pointer for source chan-
nel A has two register addresses. BLTAPTL contains the low-order part (bits 15-0) and
BLTAPTH contains the high-order part (bits 18-16) of the pointer address. Pointer
registers address word boundaries so bit 0 is always a 0.

168 Blitter Hardware

Pointer registers BLTBPTL, BLTBPTH, BLTCPTL, BLTCPTH, BLTDPTL, and
BLTDPTH apply to the B, C, and D channels, respectively. The notation BLTxPTx is
used to refer to the pointer registers generically.

The blitter uses modulos to allow manipulation of smaller images within larger images.
A modulo is the difference between the width of the larger image and the smaller image
being manipulated. There are four modulos in the blitter—BLTAMOD, BLTBMOD,
BLTCMOD, and BLTDMOD. This allows each of the three sources and the destination
to have a larger bit-plane image of a different size.

Modulos are 16-bit signed numbers. When they are added to the corresponding pointer
register, they are sign-extended to match the larger number of bits in the pointer regis-
ter. Since word addressing is used, bit O of the modulo is always a 0.

Figure 6-3 shows a possible bit-plane image that is larger than the source window being
used by the blitter. The numbers represent the addresses (in memory) of the data words
containing the image.

20 21 22 23 24 25 26 |<——Larger source

bit-piane image
27 28 29 30 31 32 33
34 35|36 37 38|39 40

Smaller source window
41 42 |43 44 45| 46 47 for blitter operations
48 49 |50 51 5253 54
65 56 57 58 59 60 61

A

Figure 6-2: Bit-plane Image Larger than the Blitter Source Window

Note that in order to operate on the smaller window only, the address sequence must be
as follows:

36, 37, 38,, 43, 44, 45,, 50, 51, 52

This requires a normal increment (41) each time, and at the end of each window line the
addition of a jump value of 4, to bring the address pointer to the start of the next win-
dow line. This jump value is called the modulo and is equal to the difference between

Blitter Hardware 169

the width of the large image and the width of the smaller window.

The blitter has a separate modulo register for each of the three possible source images
and one for the destination image (four in all). This allows the larger bit map image of
each source and the destination to be a different size, even though the smaller window
for each is identical.

Note that although the hardware deals in words for pointers and modulos, the values
loaded into these hardware registers from the 68000 are treated as byte counts. For

example, a jump value of 4 for a modulo would actually be an 8 when written from the
68000.

Ascending and Descending Addressing

It is important to be able to control the direction of the address increment or decrement
when the source and destination areas overlap. Ascending or descending is specified for

overlapping data moves either to move a block of data or to fill a region with a particu-
lar value.

If you wish to move data toward a higher address in memory with an overlap between
source and destination areas, you should use the descending (address decrement) mode
for the data move. If you wish to move data toward a lower address in memory with an
overlap between the source and destination areas, you should use the ascending (address

increment) mode for the data move. The descending mode is selected with bit 1 of
BLTCONI.

If the source and destination data areas overlap in a blitter operation, there is a possibil-
ity of writing to a particular location as the destination before it was read as the source.
To prevent this kind of data destruction, you must take care to correctly choose ascend-
ing or descending mode. Also, you may need to offset the source or destination.

Using table 6-4 at the end of the chapter, you can observe the order of operations and

determine the required offset or mode. Pay careful attention to the notes. It helps to
draw pictures.

170 Blitter Hardware

Rectangular or Linear Address Scanning

The BLTSIZE register is written to define the horizontal and vertical size of a rectangu-
lar region of memory. The pointer register (BLTxPTx) specifies where in memory the
corresponding data block starts. The blitter adds (in ascending mode) or subtracts (in
descending mode) 2 from the pointer register for each 16-bit word transferred until the
count of “horizontal” words in the BLTSIZE register is met. Then it adds the contents
of the modulo register (BLTxMOD) to the pointer register. The value in the modulo
register thus represents the value to be added to the pointer register to get it from the
point in memory just past the end of a horizontal line to the beginning of the next hor-
izontal line of the rectangular region.

The blitter can be used to process linear rather than rectangular regions by setting the
horizontal or vertical count in BLTSIZE to 1.

Blitter Logic Operations

Three sources (A, B, and C) are available to the blitter logic unit. These sources are
usually one bit-plane from each of three separate graphics images. While each of these
sources is a rectangular region composed of many points, the same logic operation will be
performed on each point throughout the rectangular region. Accordingly, for purposes
of defining the blitter logic operation it is only necessary to describe what happens for all
of the possible combinations of one bit from each of the three sources. Therefore, there
are only eight possible data combinations (minterms). For each of these input possibili-
ties you need to specify whether the corresponding D (destination) output bit is on or
off. This information is collected in a standard format, the LF control byte in the
BLTCONO register, shown below. This byte programs the blitter to perform one of the
256 possible logic operations on three sources for a given blit.

For example, an LF control byte of $80 (= 1000 0000 binary) turns on bits only for
those points of the D destination rectangle where the corresponding bits of A, B, and C
sources were all on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which
correspond to other combinations for A, B, and C, will be 0. This is because bits 6
through O of the LF control word, which specify the D output for these situations, are
set to 0. The following paragraphs discuss two conceptual approaches to designing this
LF control byte. One approach uses logic equations; the other uses Venn diagrams.

Blitter Hardware 171

.DESIGNING THE LF CONTROL BYTE WITH LOGIC EQUATIONS

Because it can logically combine data bits from separate image sources during a data
move, the blitter is very efficient in performing graphics drawing and animation opera-
tions. For example, you could design a rectangular object to combine on-screen with a

pre-existing graphic image (perhaps a car that you want to move in front of some
buildings).

Producing this effect requires predrawn images of both the car and the buildings. To
animate the car (that is, to move it in front of the buildings), first save the background
image where the car will be placed. Next, copy the car in its first location. Then restore
the old background image and save a new section of the background from the second
location. Again, copy the car, this time to the second location. A continuous sequence
of save, draw, and restore creates the desired effect.

Assume source A is the car image outline (mask), source B is one of the car image’s bit
planes, and source C is building data or background. The following operation saves the
background where the car is going to be placed (destination on the left, sources on the
right):

T = AC

This equation states that the background (C) should be saved (copied) to a temporary
destination (T) wherever the car outline mask (A) “and” the background (C) exist
together.

Now the car is placed in the background with the following opefa,tion:
C=AB + AC

This equation states that the destination is the same as the background source (C), and
background (C) should be replaced with car data (B) wherever the car outline mask (A)
is true, but (or) should stay background (C) wherever the mask is not true (A). Now the

background must be restored (to prepare for car placement in a different location) using
the following operation:

C=AT

This equation states that the background (C) should be replaced with the saved back-
ground (T) wherever the car outline mask exists (A “and” T).

172 Blitter Hardware

If you shift the data and the mask to a new location and repeat the above three steps
over and over, the car will appear to move across the background (the buildings).

Blitter Logic Operations - Combining Minterms

The blitter performs various logic operations, such as the one shown in the last section,
by combining minterms. A minterm is one of eight possible logical combinations of data
bits from three different data sources.

For example, the following equation uses two minterms, ABC and ABC:
D = ABC + ABC

This means that the logic value of D is a 1 if either ABC =1 or ABC = 1.

Another way of reading this equation is that D is true if and only if both A and B are
true. This is because the equation could be grouped as:

D=AB(C+C)

However, since the term (C + C) is always true, this equation reduces to D = AB.
Therefore, selecting the two minterms ABC and ABC will give the logic operation
D = AB. These two minterms are selected with bits 7 and 6 of BLTCONO.

The minterms that can be selected by BLTCONO control bits are as follows:

MINTERMS: ABC ABC ABC BC ABC ABC ABC BC
ENABLE BITS
(BLTCONO LF7-LF0): 7 6 5 4 3 2 1 0

Since there are eight minterms, there are 256 possible equations that can be selected.

Table of Commonly Used Equations

For your convenience, table 6-1 contains a set of commonly used equations. The last one
in the table (D = AB + AC) is often referred to as the “cookie-cut” minterm selector.

Blitter Hardware 173

Table 6-1: Table of Common Minterm Values

Selected BLTCONO Selected BLTCONO
Equation LF Code Equation LF Code
D=A FO = AB Co
D=A OF = AB 30
D=B co = AB 0C
D=8 33 D= AB 03
D=C AA = BC 88
D=0 55 = BC 4

D = AC A0 | D= BC 22

D =AC 50 = AC 11

D =AC 0A D= A+B F3

D =AC 05 = A+B 3F
D=A+B FC = A+C F5
D=A+B CF D= A+C 5F
D=A+C FA D= B+CT DD
D=A+0C AF = B+C 7
D=B+C EE D = AB + AC CA
D=B+¢C BB

174 Blitter Hardware

Equation-to-Minterm Conversion

An example of converting an equation to minterm format in order to derive the select
code is given below:

D = AB + AC (Starting equation)
D=AB(C+C)+AC(B+B) (Multiplying by 1)

D =ABC + ABC + ABC + ABC (Final minterms)

This final form contains only terms that contain all of the input sources. These are the

minterms you use. These minterms are selected with the minterm enable bits LF7-LF0Q
as shown below:

ABC ABC ABC ABC ABC ABC ABC C (Available

minterms)

(BLTCONO
1 1 0 0 1 0 1 0 LF 7-0 code in binary

C A LF 7-0 code in hex

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS

You can use Venn diagrams as an aid in selecting minterms. The Venn diagram in
figure 6-3 shows a set of three circles labeled A, B and C. In the diagram, the numbers 0

through 7 in various areas correspond to the minterm numbers shown in the preceding
section.

To select which minterms are necessary to produce a certain kind of equation result, you

need only examine the circles and' their intersections and copy down the numbers seen
there.

Blitter Hardware 175

- (&4

Figure 6-3: Blitter Minterm Venn Diagram

Examples of Venn Diagram Interpretation

1. If you wish to select a function D = A (that is, destination = A source only), you
can select only the minterms that are totally enclosed by the A-circle in the figure
above. This is the set of minterms 7, 6, 5, and 4. When written as a set of 1s for the
selected minterms and Os for those not selected, the value becomes:

76543210 MINTERM NUMBERS

11110000 SELECTED MINTERMS

F 0 equals $F0

2. If you wish to select a function that is a combination of two sources, you then look
for the minterms by both of the circles in their common area. For example, the com-

bination AB (A ‘“‘and” B) is represented by the area common to both the A and B
circles. This area encloses both minterms 7 and 6.

176 Blitter Hardware

76543210

11000000 equals $CO.

3. If you wish to use a function that is “not” one of the sources, such as A, you take
all of the minterms not enclosed by the circle represented by A on the figure.

4. If you wish to combine minterms, you need only “or” them together. For example,
the equation AB + BC results in:

AB = 11001000
BC = 10001000

11001000=$C8

Shifting

When bit-plane images are stored with sixteen 1-bit pixels in a memory word, situations
arise where a particular pixel must be in a different bit position within a word before
and after a block transfer.

For example, as described previously under “Logic Operations,” the movement of a car
image (B) across a background (C) requires both the car image (B) and the car outline
mask (A) to be shifted to a new position each time the background is saved (T = AC),
the car is placed (C = AB + A C), and the background is restored (C = AT). As the
movement proceeds, the edge of the car image can, in general, land on any bit position

within a 16-bit word. This illustrates the need for a high-speed shift capability within
the blitter.

Accordingly, the blitter contains a circuit known as a barrel shifter that can be used
with both the A and the B data sources. It can shift these sources from 0 to 15 bits. It
is a true barrel shifter; bigger shifts do not take more time than smaller shifts as they
would if performed by the microprocessor. This shifter allows movement of images on

pixel boundaries, even though the pixels are addressed 16 at a time by each word
address of the bit-plane image.

Blitter Hardware 177

There are two shift controls. Bits 15 through 12 of BLTCONO select the shift value for
source A. Bits 15 through 12 of BLTCONI1 select the shift value for source B. Both
values are normally set the same. The shift controls are used in a special way during
line drawing. See “Line Drawing” below.

Masking

If an object is not an even multiple of 16 bits in width, the blitter can mask off either
the left or the right edge or both in order to work with only the actual bit-boundary rec-
tangle enclosing the object. First- and last-word masking is particularly useful when you
need to store the images of a text font in a packed edge-to-edge organization.

For example, assume a packed font that contains both an “H” and an “I” as shown in
figure 6-4.

111 1111111
11 11 11
11 11 11

111111111 11
111111111 11

11 11 11
11 11 11
111 1111111

Figure 6-4: A Packed Font

To isolate the “I” character, the first 11 bits along the left edge of the enclosing rectan-
gle must be masked. The blitter includes this capability, called the first-word mask, and
applies it to the leftmost word on each horizontal line. Only when there is a 1 bit in the
first-word mask will that bit of source A actually appear in the logic operation.

For example, if the first-word mask (BLTAFWM) is 0000000000001111, the data the
blitter will see, using the input for source A shown above, is shown in figure 6-5.

178 Blitter Hardware

1111

Figure 6-5: Blitter Masking Example

In a similar way, the blitter’s last-word mask (BLTALWM) masks the rightmost word of
the source A data. Thus, it is possible to extract rectangular data from a source whose
right and left edges are between word boundaries.

If the window is only one word wide (as illustrated above), the first and last word masks
will overlap, and source-A bits will be passed only where both masks are true. This
example assumed the last word mask was loaded with all 1s ($FFFF) as all masks should
be when they are not needed.

Zero Detection

A blitter zero flag is provided that can be tested to determine if the logic operation
selected has resulted in a null (empty = all zeros) logic operation result. The zero flag
(BZERO) in bit 13 of DMACONR will stay true if the result is all zeros.

This feature is usually used to assist collision detection by “and”ing two images together
to test for overlap. The operation D = AB is performed (D can actually be disabled),
and if images A and B do not overlap, the zero flag will stay true.

When the purpose of a blit is only to do zero detection and not to generate a D destina-

tion image, the USED bit (bit 8 of BLTCONO) can be turned off to save time and bus
cycles.

Blitter Hardware 179

Area Filling

In addition to copying data, the blitter can simultaneously perform a fill operation dur-
ing the copy. The fill operation has only one restriction: the area to be filled must be
defined by first drawing untextured lines that are only one bit wide. A special line draw
mode is available for this (see the “Line Drawing” section).

INCLUSIVE (NORMAL) AREA FILLING
Figure 6-6 shows a typical area fill. It demonstrates one of the bars from a bar chart.

Before After

001000100 001111100
001000100 001111100
001000100 001111100
001000100 001111100

Figure 6-6: Area-fill Example — Bar Chart

A blitter line-draw is first performed to provide the two vertical lines, each one bit wide.
To fill this area, you follow these steps. NOTE: A fill operation can be performed dur-

ing other blitter data copy operations; however, it is often done separately, as shown
here. '

1. Set the modulos equal to the width of the total image minus the width of the
rectangle to be filled.

(BLTXMOD) (x = A,B,C,D)

2. Set the source and destination pointers to the same value. A case like this
requires only one source and destination. This should point to the last (lower-
right) word of the enclosing rectangle (see also item 3 below).

(BLTxPTH, BLTxPTL) (x = A,B,C,D)

180 Blitter Hardware

3. Run the blitter in the descending direction. The fill operation operates
correctly only in the descending mode (right to left).

(BLTCONI, Bit 1 = 1)

4, Use the control bit called “FCI” (for fill-carry-in) to define how the fill opera-
tion should be performed.

(BLTCONI, Bit 2 = 0)

This defines the fill start state as a 0.

5. Define the horizontal and vertical size of a rectangle of words that will enclose
the lines around the area to be filled. This value must be written to the size
control (BLTSIZE) register to start the fill.

The blitter uses the FCI bit as the starting fill state, beginning at the rightmost edge of
each line. For each “1” bit in the source area, the blitter “flips” the fill state, either
filling or not filling the space with 1’s. This continues for each line until the left edge of
the blit is reached. At that point, the filling stops. For another example, examine the

figure below. Only the 1 bits are shown in figure 6-7. The O bits are blank. The figure
is not drawn to scale.

Before After
1 1 1 1 11111 11111
1 1 1 1 11111 11111
1 1 1 1 1111 1111
11 11 111 111
11 11 11 11
11 11 111 111
1 1 1 1 1111 1111
1 1 1 1 11111 11111

Figure 6-7: Use of the FCI Bit - Bit Is a 0

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with 1s and the
area inside the lines is left with Os in between.

Blitter Hardware 181

&
o
'-‘
0

After

[
[

111 111111 11
111 1111111 11
1111 11111111 11
111311 1131331131311 11
1111111111311311311311
111311 113131313111 11
1111 11111111 11
111 1111111 11

=
[

- -
B P
HHEHHHEREHRPR
- -
BH
e =

=
[

Figure 6-8: Use of the FCI Bit- BitIsa 1

EXCLUSIVE AREA FILLING

There are two fill enable bits within BLTCON1. They are called IFE (for “Inclusive Fill

Enable”) (used in the previous examples), and EFE (for “Exclusive Fill Enable”) (used in
the example below).

Exclusive fill enable means to exclude (remove) the outline on the trailing edge (left side)
of the fill.

Since the blitter is running in descending mode during a fill, the trailing edge is formed
from the leftmost of each pair of bits on a horizontal line.

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be
used. Figure 6-9 shows how a single-point vertex is produced using exclusive-fill enable.

182 Blitter Hardware

Before : After Exclusive Fill

i1 1 i1 1 1111 1111
11 11 111 111
11 11 11 11
11 11 1 1
11 11 11 11
11 11 111 111
1 1 1 1 1111 1111

Figure 6-9: Single-Point Vertex Example

Line Drawing

In addition to all the functions described above, the blitter has a line-drawing mode.
The line-drawing mode is selected by placing a 1 in bit 0 of BLTCONI1, which causes
redefinition of some of the other control bits in BLTCONO and BLTCONI. (See the
description of the BLTCON registers in the appendix for the meanings of the other con-
trol bits.)
In line-drawing mode, the blitter has the following features:

o Draws lines up to 1,024 pixels long (twice as big as the high-resolution screen).

o Draws lines with regular or inverse video.

o Draws solid lines or textured lines.

o Draws special lines with one dot on each scan line, for use with area fill.
Many of the blitter registers serve other purposes in line-drawing mode. These registers
and their functions are itemized in table 6-2 for reference purposes. Consult the appen-

dix for more detailed descriptions of the use of these registers and control bits in line-
drawing mode.

Blitter Hardware 183

Table 6-2: Blitter Registers in Line-drawing Mode

Register Bit Bit

Name Number Name State Purpose

BLTCONO 15,14,13,12 START Code for horizontal position
of first pixel
BLTCONO 11,10,9,8 USE 1011 Required for line-drawing
BLTCON1 15,14,13,12 BSH 0 Starts texture at bit 0
BLTCON1 5 Reserved
BLTCONI1 432 Octant select code
(See figure 6-10 below.)

BLTCON1 1 SING 0,1 Set for single-bit-width line
BLTCON1 0 LINE 1 Enables line-drawing mode
BLTADAT All 8000 Index required for line-drawing
BLTBDAT All 0 to FFFF Line texture register
BLTSIZE 50 w - 02 Required for line-drawing
BLTSIZE 156 h Line length up to 1024
BLTAMOD All 2(2Y - 2X) =
BLTBMOD All 2(2Y) *
BLTCMOD All Width of total image
BLTDMOD All Width of total image
BLTAPT All 2Y-X) =
BLTCPT All Starting address of line
BLTDPT All Starting address of line

* Y and X are the height and width of the rectangle enclosing the line.

OCTANTS IN LINE DRAWING

Standard computer graphics texts, such as Newman and Sproul, discuss a system for
dividing the Cartesian plane into eight regions called octants for purposes of line draw-
ing. Figure 6-10 shows the numerical codes Amiga has assigned to each octant. The
dotted lines in the figure represent the x-axis and y-axis.

Line drawing based on octants is a simplification that takes advantage of symmetries

between x and -x, y and -y. The octant code and several values derived from delta x
and delta y are loaded into blitter control registers as shown in table 6-3.

184 Blitter Hardware

Figure 6-10: Octants for Line Drawing

In figure 6-10, the number in parentheses is the octant number and the other number
stands for bits 4, 3, and 2 of register BLTCONI1 as shown in table 6-3. Also see the
table at the end of the description of BLTCONI in appendix A.

Table 6-3: BLTCON1 Code Bits for Octant Line Drawing

BLTCON1 Code Bits
4 3 2 Octant #

o (D ik e ek O O
OO O O = i O i
OO O = it = O
O VTR WO

Blitter Hardware 185

Blitter Operations and System DMA

The operations of the blitter affect the performance of the rest of the system. The fol-
lowing sections explain how system performance is affected by blitter direct memory
access (DMA) priority, DMA time slot allocation, bus sharing between the 68000 and the
bit-plane, the operations of the blitter and Copper, and different playfield display sizes.

BLITTER DMA PRIORITY

The blitter performs its various data-fetch, modify, and store operations through DMA
sequences, and it shares memory access with other devices in the system. Each device

that accesses memory has a priority level assigned to it, which indicates its importance
relative to other devices.

Disk DMA, audio DMA, bit-plane DMA, and sprite DMA all have the highest priority
level. Bit-plane DMA has priority over sprite DMA under certain circumstances. Each of
these four devices is allocated a group of time slots during each horizontal scan of the
video beam. If a device does not request one of its allocated time slots, the slot is open
for other uses. These devices are given first priority because missed DMA cycles can
cause lost data, noise in the sound output, or on-screen interruptions.

The Copper has the next priority because it has to perform its operations at the same

time during each display frame to remain synchronized with the display beam sweeping
across the screen.

The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter
is given the higher priority because it performs data copying, modifying, and line draw-
ing operations operations much faster than the 68000.

DMA TIME SLOT ALLOCATION

During a horizontal scan line (about 63 microseconds), there are 227.5 “color clocks”, or
memory access cycles. A memory cycle is approximately 280 ns in duration. The total
of 227.5 cycles per horizontal line includes both display time and non-display time. Of

this total time, 226 cycles are available to be allocated to the various devices that need
Memory access.

The time-slot allocation per horizontal line is

186 Blitter Hardware

o 4 cycles for memory refresh (assigned to odd-numbered slots)
o 3 cycles for disk DMA

o 4 cycles for audio DMA (2 bytes per channel)

o 16 cycles for sprite DMA (2 words per channel)

o 80 cycles for bit-plane DMA (even- or odd-numbered slots according to the
display size used)

Figure 6-11 shows one complete horizontal scan line and how the clock cycles are
allocated.

Blitter Hardware 187

SO”—»‘ 20 l—

DMA Time Slot Allocation/Horizontal line

Decimal numbers above the lov

cycles. Decimal numbers below the illustrations represent high-
resolution cycies. Negative numbers indicate the start of data
fetch for displays that are larger than normal.

Decimal numbers inside the illustrations represent the bit-plane
for which the data is being fetched.

$10
|

$18

Hardware stop installed here. Data fetch cannot begin aay sooner
than cycle $18. This allows the user to wipe out most of the sprites
o desired {by defining an extra-wide display) but leaves the audio
and disk DMA untouched.

$20

s$28

S30 $38

HTIT

2

4

/A
j«t—MEMORY REFRESH —>i<—msx DMA TIME->|<-——AUDIO DMA TIME
DMA TIME

SPRITE DMA TIME

Data fetch start can only be specified at even
multiples of 8 clocks. This is the clock position
which should be specified for the normal width
display. (20 word fetch for 320 pixel, 40 word
fetch for 640 pixel width)

Five clocks must occur before the data fetched for a particular
position can appear on-screen. For example, if data fetch start
is $38, data will not be available for display until clock number
$45. It is available at $45 because display processing does not
begin until a// of the bit-planes for a particular pixel have been
fetched.

- i -
\ l‘Data fetch completed
$38 84 for cycle $38 ! 318

$58 $00
| Normal Res.

Some sprites are unusable if the display starts early due to
an extra word(s) associated with a wide chsplay and or
honzontal scrolling. In this case, the bit-plane DMA steals
the cycles normally allocated to the sprites, as ilhsstrated
above.

A hardware data-fetch stop has been installed at count SD8
50 as to prevent the tit-plane data-fetch from overrunning
the time aliotted for the memory refresh or disk DMA.

gt CYCLES —»»]
5-19 same
ascycle 4

High Res.

End of
Horizontal
Line Data
Fetch Cycle

These operations only take slots if the associated operation is being performed.
Note: Copper Data Move instructions require 4 slots.
Copper Wait instructions require 6 slots.
This cycle 0 appears to exclude one of the memory refresh cycles. This is not the case.
Actual system hardware demands certain specific values for data fetch start and display start.
Therefore this timing chart has been “adjusted” to match those requirements.

$ Indicates a hex number.

CYCLES
8-37 same
ascycle?

320 mode 8it-Plane DMA, by plane #

640 mode Bit-Piane DMA, by plane ¥

D Slots available for Blitter, Copper and 68000 ¢

Figure 6-11: DMA Time Slot Allocation

Sprite DMA ¢ (2 words/channel)

[I]]]] Audio DMA t (2 bytesichannel)

E Disk DMA #
Memory Refresh

below}

BIT-PLANE/PROCESSOR BUS SHARING

The 68000 uses only the even-numbered memory access cycles. The 68000 spends about
half of a complete processor instruction time doing internal operations and the other half
accessing memory. Therefore, the allocation of alternate memory cycles to the 68000

makes it appear to the 68000 that it has the memory all of the time, and it will run at
full speed.

Some 68000 instructions do not match perfectly with the allocation of even cycles and
cause cycles to be missed. If cycles are missed, the 68000 must wait until its next avail-
able memory slot before continuing. However, most instructions do not cause cycles to

be missed, so the 68000 runs at full speed most of the time if there is no blitter DMA
interference.

Figure 6-12 illustrates the normal cycle of the 68000.

-t average 68000 cycle »
«———— internal ——»j¢—— memory =3
operation access
portion portion
odd cycle, even cycle,
assigned to ‘ available to
other devices the 68000

Figure 6-12: Normal 68000 Cycle

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted
alternate memory cycles (if it is ready to ask for the cycle and is the highest priority
item at the time). However, if there are more than four bit-planes, bit-plane DMA will
begin to steal cycles from the 68000 during the display.

During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160
time slots will be taken by bit-plane DMA for each horizontal line. As you can see from
figure 6-13, bit-plane DMA steals 50 percent of the open slots that the processor might
have used if there were only four bit-planes displayed.

Blitter Hardware 189

- timing cycle —

+

T+7

Figure 6-13: Time Slots Used by a Six-bit-plane Display

Notes for figure 6-13:

4 an open memory slot that the 68000 might use

* g slot that cannot be used by the 68000 because of added bit-plane DMA

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all
of the available memory time slots during the display time just to fetch the 40 data
words for each line of the four bit-planes (40 x 4 = 160 time slots). This effectively
locks out the 68000 (as well as the blitter or Copper) from any memory access during the

display.

Figure 6-14 shows how the time slots are allocated for high-resolution bit-planes.

— timing cycle —

T+7

Figure 6-14: Time Slots Used by a High-resolution Display

190 Blitter Hardware

EFFECTS OF DIFFERENT DISPLAY SIZES

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution
mode or 640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched
during the horizontal line display time. If you want to scroll a playfield, one extra data
word per line must be fetched from the memory.

Display size is adjustable (see chapter 3, “Playfield Hardware”), and bit-plane DMA
takes precedence over sprite DMA. As shown in figure 6-11, larger displays may block
out one or more of the highest-numbered sprites, especially with scrolling.

EFFECTS OF BLITTER OPERATION

As mentioned above, the blitter normally has a higher priority than the processor for
DMA cycles. There are certain cases, however, when the blitter and the 68000 can share
memory cycles. If given the chance, the blitter would steal every available memory
cycle. Display, disk, and audio DMA take precedence over the blitter, so it cannot block
them from bus access. Depending on the setting of the blitter DMA mode bit, com-
monly referred to as the “blitter-nasty” bit, the processor may be blocked from bus
access. This bit is called BLTPRI (for “blitter has priority over processor”) and is in
register DMACONW.,

If BLTPRI is a 1, the blitter will keep the bus for every available memory cycle. This
could potentially be every cycle.

~If BLTPRI is a 0, the DMA manager will monitor the 68000 cycle requests. If the 68000
is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one
cycle.

Table 6-4 shows all of the possible operating modes of the blitter, along with the distri-
bution of its memory access windows. The table shows three words of a blit (the first
word, any middle word, and the last word) and how bus activity occurs for this
sequence. The following conventions are used in this table:

o A, B, and C stand for the sources.
o D stands for the destination.
o Numerical suffixes indicate which word within a blit is being fetched. For

example AO is the first memory word fetch; Al is any middle memory word
fetch; and A2 is the last memory word fetch.

Blitter Hardware 191

Table 6-4: Typical Blitter Cycle Sequence

USE Code
in Active
BLTCONO Channels Cycle Sequence
F A B CD A0 Bo Co - A1 B1 C1 DO A2 B2 C2 D1 D2
E A B C A0 B0 Co A1 Bl C1 A2 B2 C2
D A B D A0 Bo - A1 Bl DO A2 B2 D1 - D2
C A B A0 BO - Al Bl - A2 B2
B A C D A0 CO - A1 C1 DO A2 C2 D1 - D2
A A C A0 CO Al C1 A2 C2
9 A D A0 - A1 DO A2 D1 - D2
8 A A0 - A1l - A2
7 B CD BO CO - - Bi1 Ci1 DO - B2 C2 D1 - D2
6 B C Bo Co - Bl C1 - B2 C2
5 B D B0 - - B1 DO - B2 D1 - D2
4 B BO - - BT - - B2
3 Cc D co - - Ci1L D0 - C2D1 - D2
2 C co - C - Q2
1 D DO - D1 - D2
0 none - - - -

Notes for table 6-4:

o Nofill
o No competing bus activity.

o Three-word blit.

o Typical operation involves fetching all sources twice before the first destination
becomes available. This is due to internal pipelining. Care must be taken with
overlapping source and destination regions. '

Table 6-4 is only meant to be an illustration of the typical order of blitter cycles on the
bus. Bus cycles are dynamically allocated based on blitter operating mode; competing
bus activity from processor, bit-planes, and other DMA channels; and other factors.
Commodore-Amiga does not guarantee the accuracy of or future adherence to this chart.

We reserve the right to make product improvements or design changes in this area
without notice.

192 Blitter Hardware

Complete Blitter Example

The following example sets up the blitter to clear a block of memory. This program
assumes you have the required include files to get correct magic numbers.

This code is meant to be only an example. Programmers who wish to use the blitter
directly and who want. their code to perform with the rest of the Amiga software must
do the appropriate OwnBlitter(), DisownBlitter(), and WaitBlit() calls. See the
Amiga ROM Kernel Manual for information about using these calls.

include ‘exec/types.i’
include ‘hardware/custom.i’
include ‘hardware/blit.i’

xref _custom
;
;Busy-wait for the previous blit to complete

WAITBLIT:

BTST #DMAB_BLTDONE-8, DMACONR(A1)

BNE.S WAITBLIT

RTS
H ‘
: This routine uses a side affect in the blitter. When each of the blits is
finished, the pointer in the blitter is pointing to the next word to be blitted.
;A0 = pointer to first word to clear
;0 = number of even bytes to clear

CLEARMEM:

LEA _CUSTOM,A1 ;Get pointer to chip registers

MOVE.L AO0BLTPTD(Al) ;Set up destination to clear

CLR.W BLTMDD(A1) ;Set modulo to no-skip

ASR.L #1,D0 ;Convert to number of words

CLR.W BLTCON1(A1) ;INo special modes .
MOVE.W #DEST BLTCONO(A1) ;Minterms = 0, enable only destination

; This routine splits the blit into several parts to feed the blitter.
;First, the leftovers.

MOVEQ #$3F,D1

AND.W D0,D1 ;Extract non-64-words-at-a-time part
BEQ.S LABEL1 ;Even up the blit with a small one first
SUB.L D1,D0
OR #$40,D1 ;Make it one row X leftover words

MOVE.W D1,BLTSIZE(A1) ;Trigger the blit

Blitter Hardware 193

LABELL:

H

MOVEW #$FFC0,D1

AND.W Do,D1

Note: the upper word of d1 is already zero
' ;Now look at more upper bits
;Extract 10 more bits

BEQ.S LABEL2 ;Any to do?
SUB.L D1,D0 :How many 128-Kbyte blocks left
BSR WAITBLIT ;Wait for any previous blit to complete
MOVE.W DOBLTSIZE(A1) ;Trigger next blit
LABEL2:
SWAP Do
BEQ.S DONE ;Check for any bits set in upper word
CLR.W D1 sWill do blits 128 Kbytes at a time
LOOP:
BSR WAITBLIT
; Need move for this to work on 68000
MOVE D1,BLTSIZE(A1) s Trigger a big blit
SUBQ.W #1,D0 ;Could be a dbf
BNE.S LOOP :Any more 128-Kbyte blits?
DONE:
; Exit. Note: blit may still be in progress.
; The support to manage async blits is one of the
; reasons to use the system software from Amiga.
RTS

194 Blitter Hardware

Blitter Block Diagram

Figure 6-15 shows the basic building blocks for a single bit of a 16-bit-wide operation of
the blitter. It does not cover the line-drawing hardware.

1.

The upper left corner shows how the first- and last-word masks are applied to
the incoming A-source data. When the blit shrinks to one word wide, both the
first- and last-word masks apply to the incoming data word.

The shifter (upper right and center left) drawing illustrates how 16 bits of data
is taken from a specified position within a 32-bit register, based on the A-shift or
B-shift values shown in BPLCONO and BPLCONI.

The minterm generator (center right) illustrates how the minterm select bits
either allow or inhibit the use of a specific minterm.

The drawing shows how the fill operation works on the data generated by the
minterm combinations. Fill operations can be performed simultaneously with
other complex logic operations.

At the bottom, the drawing shows that data generated for the destination can

be prevented from being written to a destination by using one of the blitter con-
trol bits.

Not shown on this diagram is the logic for zero detection, which looks at every
bit generated for the destination. If there are any 1-bits generated, this logic

indicates that the area of the blit contained at least one 1-bit (zero detect is
false).

Blitter Hardware 195

DATA BUS

\
B
new
4 16
B
old
y ‘1’ s 16
SHIFT B—] .
VALUE F— SHIFTER (32 bit)
(Blitter 16 bits
GO BULLE
A L B8
hold hold
A A,
116 16

hold

ABC

3

Minterm Generator

ABT ABC ABC

{all minterms produced)

ABC ASC ABC

AND| |AND] JAND] [AND|]AND§ f AND| JAND w

16 BLOCKS

V.

OR
N—
®

A'\flll enable

Fill
Carry
Qut
(to next
block}

y y \L
FW A W
Mask new Mask
A 16 +16 416
first et
word st
time } AND AND| center - JANDY time
words
time
OR
16 BLOCKS I
16
A
old
¢ -
T16 “116
»] SHIFTA .
1 VALUE SHIFTER {32 bit)
4._‘_2?15_,_.
Multi-Minterm
o Select Bits (8)
> Fill Carry In
Fill Enable
Store to
Destination

DATA BUS

/ Y
| D

Figure 6-15: Blitter Block Diagram

196 Blitter Hardware

Fill
Carry

(to next
word)

Chapter 7

SYSTEM CONTROL HARDWARE

Introduction
This chapter covers the control hardware of the Amiga system, including the following
topics:

o How playfield priorities may be specified relative to the sprites

System Control Hardware 197

o How collisions between objects are sensed

o How system direct memory access (DMA) is controlled

o How interrupts are controlled and sensed

Video Priorities

You can control the priorities of various objects on the screen to give the illusion of

three dimensions. The section below shows how playfield priority may be changed rela-
tive to sprites.

FIXED SPRITE PRIORITIES

You cannot change the relative priorities of the sprites. They will always appear on the
screen with the lower-numbered sprites appearing in front of (having higher screen prior-
ity than) the higher-numbered sprites. This is shown in figure 7-1. Each box represents
the image of the sprite number shown in that box.

Figure 7-1: Inter-Sprite Fixed Priorities

198 System Control Hardware

HOW SPRITES ARE GROUPED

For playfield priority and collision purposes only, sprites are treated as four groups of
two sprites each. The groups of sprites are:

Sprites 0 and 1
Sprites 2 and 3
Sprites 4 and 5
Sprites 6 and 7

UNDERSTANDING VIDEO PRIORITIES

The concept of video priorities is easy to understand if you imagine that four fingers of
one of your hands represent the four pairs of sprites and two fingers of your other hand
represent the two playfields. Just as you cannot change the sequence of the four fingers
on the one hand, neither can you change the relative priority of the sprites. However,
just as you can intertwine the two fingers of one hand in many different ways relative to
the four fingers of the other hand, so can you position the playfields in front of or
behind the sprites. This is illustrated in figure 7-2.

In Front (Higher Priority)

Playfields T

Sprite Groups

Behind

Figure 7-2: Analogy for Video Priority

System Control Hardware 199

Five possible positions can be chosen for each of the two “playfield fingers.” For exam-
ple, you can place playfield 1 on top of sprites 0 and 1 (0), between sprites 0 and 1 and
sprites 2 and 3 (1), between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4

and 5 and sprites 6 and 7 (3), or beneath sprites 6 and 7 (4). You have the same possi-
bilities for playfield 2.

The numbers O through 4 shown in parentheses in the preceding paragraph are the
actual values you use to select the playfield priority positions. See “Setting the Priority
Control Register’”” below.

You can also control the priority of playfield 2 relative to playfield 1. This gives you
additional choices for the way you can design the screen priorities.

SETTING THE PRIORITY CONTROL REGISTER

This register lets you define how objects will pass in front of each other or hide behind
each other. Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit rev-
erses this relationship, making playfield 2 more important. You control the video priori-

ties by using the bits in BPLCON2 (for “bit-plane control register number 2”) as shown
in table 7-1.

Table 7-1: Bits in BPLCON2

Bit
Number Name Function
15-7 Not used (keep at 0)
6 PF2PRI Playfield 2 priority

5-3 PF2P2 - PF2P0 Playfield 2 placement with
respect to the sprites

2-0 PF1P2 - PF1PO Playfield 1 placement with
respect to the sprites

The binary values that you give to bits PF1P2-PF1P0 determine where playfield 1

occurs in the priority chain as shown in table 7-2. This matches the description given in
the previous section.

200 System Control Hardware

Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1P0

Value Placement
(from most important to least important)

000 PF1 SP01 SP23 SP45 SP67
001 SP01 PF1 SP23 SP45 SP67
010 SPo1 SP23 PF1 SP45 SP67
011 SP01 SP23 SP45 PF1 SP67
100 SP01 SP23 SP45 SP67 PF1

In this table, PF1 stands for playfield 1, and SPO1 stands for the group of sprites num-
bered 0 and 1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and
5 as a group; and SP67 stands for sprites 6 and 7 as a group.

Bits PF2P2-PF2P0 let you position playfield 2 among the sprite priorities in exactly the
same way. However, it is the PF2PRI bit that determines which of the two playfields

appears in front of the other on the screen. Here is a sample of possible BPLCON2
register contents that would create something a little unusual:

BITS 15-7 PF2PRI PF2P2-0 PF1P2-0

VALUE Os 1 010 000
This will result in a sprite/playfield priority placement of:
PF1 SP01 SP23 PF2 SP45 SP67

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or
1; and sprites O through 3 are in front of playfield 2. However, playfield 2 is in front of

playfield 1 in any area where they overlap and where playfield 2 is not blocked by sprites
0 through 3.

System Control Hardware 201

Collision Detection

You can use the hardware to detect collisions between one sprite group and another
sprite group, any sprite group and either of the playfields, the two playfields, or any
combination of these items.

The first kind of collision is typically used in a game operation to determine if a missile
has collided with a moving player. The second kind of collision is typically used to keep
a moving object within specified on-screen boundaries. The third kind of collision detec-
tion allows you to define sections of playfield as individual objects, which you may move
using the blitter, This is called playfield animation. If one playfield is defined as the
backdrop or playing area and the other playfield is used to define objects (in addition to
the sprites), you can sense collisions between the playfield-objects and the sprites or
between the playfield-objects and the other playfield.

HOW COLLISIONS ARE DETERMINED

The video output is formed when the input data from all of the bit-planes and the
sprites is combined into a common data stream for the display. For each of the pixel
positions on the screen, the color of the highest priority object is displayed. Collisions
are detected when two or more objects attempt to overlap in the same plxel position.
This will set a bit in the collision data register.

HOW TO INTERPRET THE COLLISION DATA

The collision data register, CLXDAT, is read-only, and its contents are automatically
cleared to O after it is read. Its bits are as shown in table 7-3.

202 System Control Hardware

Bit
Number

15
14
13
12
11
10

O ki N W CTO 00O

The notes in parentheses in table 7-3 refer to collisions that will register only if you want
them to show up. The collision control register described below lets you either ignore or

Table 7-3: CLXDAT Bits

Collisions Registered

not used

Sprite 4 (or 5) to sprite 6 (or 7)
Sprite 2 (or 3) to sprite 6 (or 7)
Sprite 2 (or 3) to sprite 4 (or 5)
Sprite 0 (or 1) to sprite 6 {or 7)
Sprite O (or 1) to sprite 4 (or 5)
Sprite 0 (or 1) to sprite 2 (or 3)
Even bit-planes to sprite 6 (or 7)
Even bit-planes to sprite 4-(or 5)
Even bit-planes to sprite 2 (or 3)
Even bit-planes to sprite 0 (or 1)
Odd bit-planes to sprite 6 (or 7)
Odd bit-planes to sprite 4 (or 5)
Odd bit-planes to sprite 2 (or 3)
Odd bit-planes to sprite 0 (or 1)
Even bit-planes to odd bit-planes

include the odd-numbered sprites in the collision detection.

Notice that in this table, collision detection does not change when you select either

Collision detection depends only on the actual bits
present in the odd-numbered or even-numbered bit-planes. The collision control register

single- or dual-playfield mode.

specifies how to handle the bit-planes during collision detect.

HOW COLLISION DETECTION IS CONTROLLED

The collision control register, CLXCON, contains the bits that define certain characteris-

tics of collision detection. Its bits are shown in table 7-4.

System Control Hardware 203

Bit
Number

15
14
13
12
11
10
9

O m oWk Gt 3 0

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-
numbered sprite of a pair of sprites. The even-numbered sprites always are included in
the collision detection. Bits 11-6 let you specify whether to include or exclude specific
bit-planes from the collision detection. Bits 5-0 let you specify the polarity (true-false
condition) of bits that will cause a collision. For example, you may wish to register colli-
sions only when the object collides with “something green” or “something blue.” This
feature, along with the collision enable bits, allows you to specify the exact bits, and

Name

ENSP7
ENSP5
ENSP3
ENSP1
ENBP6
ENBP5
ENBP4
ENBP3
ENBP2
ENBP1
MVBP6
MVBP5
MVBP4
MVBP3
MVBP2
MVBP1

Table 7-4: CLXCON Bits

Function

Enable sprite 7 (OR with sprite 6)

Enable sprite 5 (OR with sprite 4)

Enable sprite 3 (OR with sprite 2)

Enable sprite 1 (OR with sprite 0)

Enable bit-plane 6 (match required for collision)
Enable bit-plane 5 (match required for collision)
Enable bit-plane 4 (match required for collision)
Enable bit-plane 3 (match required for collision)
Enable bit-plane 2 (match required for collision)
Enable bit-plane 1 (match required for collision)
Match value for bit-plane 6 collision

Match value for bit-plane 5 collision

Match value for bit-plane 4 collision

Match value for bit-plane 3 collision

Match value for bit-plane 2 collision

Match value for bit-plane 1 collision

their polarity, for the collision to be registered.

This register is write-only. If all bit-planes are excluded (disabled), then a

NOTES

bit-plane collision will always be detected.

204 System Control Hardware

Beam Position Detection

Sometimes you might want to synchronize the 68000 processor to the video beam that is
creating the screen display. In some cases, you may also wish to update a part of the

display memory after the system has already accessed the data from the memory for the
display area.

The address for accessing the beam counter is provided so that you can determine the
value of the video beam counter and perform certain operations based on the beam posi-
tion. Note, however, that the Copper is already capable of watching the display position
for you and doing certain register-based operations automatically. Refer to “Copper
Interrupts” below and chapter 2, “Coprocessor Hardware,” for further information.

In addition, when you are using a light pen with this system, this same address is used
to read the light pen position rather than the beam position. This is described fully in
chapter 8, “Interface Hardware.”

USING THE BEAM POSITION COUNTER

There are four addresses that access the beam position counter. Their usage is described
in table 7-5.

System Control Hardware 205

Table 7-5: Contents of the Beam Position Counter

VPOSR Read-only
Bit 15
Bits 14-1

Bit O

VHPOSR Read-only

Bits 15-8

Bits 7-0

VPOSW Write only

VHPOSW Write only

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from
and written to as long words, with the most significant addresses being VPOSR and

VPOSW.

206 System Control Hardware

Read the high bit of the vertical
position (V8) and the frame-type bit.

LOF (Long-frame bit). Used to
initialize interlaced displays.

Unused

High bit of the vertical position

(V8). Allows PAL line counts (313) to

appear in PAL versions of the Amiga.

Read vertical and horizontal
position of the counter that is
producing the beam on the screen
(also reads the light pen).

Low bits of the vertical
position, bits V7-VO

The horizontal position, bits H8-H1.
Horizontal resolution is 1/160th
of the screen width.

Bits same as VPOSR above.
Bits same as VHPOSR above.

Used for counter synchronization
with chip test patterns.

Interrupts

This system supports the full range of 68000 processor interrupts. The various kinds of
interrupts generated by the hardware are brought into the peripherals chip and are
translated into six of the seven available interrupts of the 68000.

NONMASKABLE INTERRUPT

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the
current system. The raw interrupt lines of the 68000, IPL2 through IPLO, are brought
out to the expansion connector and can be used to generate this level 7 interrupt for
‘debugging purposes.

MASKABLE INTERRUPTS

Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip

allow you to mask certain of these sources and prevent them from generating a 68000
interrupt.

USER INTERFACE TO THE INTERRUPT SYSTEM

The system software has been designed to correctly handle all system hardware inter-
rupts at levels 1 through 6. A separate set of input lines, designated INT2* and INT6* 1
have been routed to the expansion connector for use by external hardware for interrupts.
These are known as the external low- and external high-level interrupts.

These interrupt lines are connected to the peripherals chip and create interrupt levels 2
and 6, respectively. It is recommended that you take advantage of the interrupt
handlers built into the operating system by using these external interrupt lines rather
than generating interrupts directly on the processor interrupt lines.

1 A * indicates an active low signal.

System Control Hardware 207

INTERRUPT CONTROL REGISTERS

There are two interrupt registers, interrupt enable (mask) and interrupt request (status).
Each register has both a read and a write address.

The names of the interrupt addresses are

INTENA
Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA.

INTENAR _
Interrupt enable (mask) read - read only. Reads contents of INTENA.

INTREQ

Interrupt request (status) - write only. Used by the processor to force a certain
kind of interrupt to be processed (software interrupt). Also used to clear inter-
rupt request flags once the interrupt process is completed.

INTREQR

Interrupt request (status) read - read only. Contains the bits that define which
items are requesting interrupt service.

The bit positions in the interrupt request register correspond directly to those
same positions in the interrupt enable register. The only difference between the

read-only and the write-only addresses shown above is that bit 15 has no mean-
ing in the read-only addresses.

SETTING AND CLEARING BITS

Below are the meanings of the bits in the interrupt control registers and how you use
them.

208 System Control Hardware

Set and Clear

The interrupt registers, as well as the DMA control register, use a special way of select-
ing which of the bits are to be set or cleared. Bit 15 of these registers is called the
SETCLR bit.

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to
set and a 1 into position 15.

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish
to clear and a 0 into position 15.

Positions 14-0 are bit-selectors. You write a 1 to any one or more bits to select that bit.
At the same time you write a 1 or 0 to bit 15 to either set or clear the bits you have
selected. Positions 14-0 that have 0 value will not be aflected when you do the write. If

you want to set some bits and clear others, you will have to write this register twice
(once for setting some bits, once for clearing others).

Master Interrupt Enable

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master
interrupt enable bit. If this bit is a 0, it disables all other interrupts. You may wish to
clear this bit to temporarily disable all interrupts to do some critical processing task.

NOTE

This bit is used for enable/disable only. It creates no interrupt request.

External Interrupts

Bits 13 and 3 of the interrupt registers are reserved for external interrupts.

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic 0. Bit
13 generates a level 6 interrupt.

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic 0.

Bit 3 causes a level 2 interrupt.

System Control Hardware 209

Vertical Blanking Interrupt

Bit 5, VERTB, causes an interrupt at line O (start of vertical blank) of the video display
frame. The system is often required to perform many different tasks during the vertical
blanking interval. Among these tasks are the updating of various pointer registers,
rewriting lists of Copper tasks when necessary, and other system-control operations.

The minimum time of vertical blanking is 20 horizontal scan lines (begins at line 0 and
ends at line 20). You also have control over where (after line 20) the display actually
starts by using the DIWSTRT (display window start) register (see chapter 3, “Playfield
Hardware”). This can extend the effective vertical blanking time.

If you find that you still require additional time during vertical blanking, you can use
the Copper to create a level 3 interrupt. This Copper interrupt would be timed to occur

Just after the last line of display on the screen (after the display window stop which you
have defined by using the DIWSTOP register).

Cop per Interrupt

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can
change the content of any of the bits of this register, as it can write any value into most

of the machine registers. However, this bit has been reserved for specifically identifying
the Copper as the interrupt source.

Generally, you use this bit when you want to sense that the display beam has reached a

specific position on the screen, and you wish to change something in memory based on
this occurrence.

Audio Interrupts

Bits 10 - 7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2,
AUD1, and AUDO and are assigned to channels 3, 2, 1, and 0, respectively.

This level 4 interrupt signals “audio block done.” When the audio DMA is operating in
automatic mode, this interrupt occurs when the last word in an audio data stream has

been accessed. In manual mode, it occurs when the audio data register is ready to
accept another word of data.

210 System Control Hardware

See chapter 5, “Audio Hardware,” for more information about interrupt generation and
timing.

Blitter Interrupt

Bit 6, BLIT, signals “blitter finished.” If this bit is a 1, it indicates that the blitter has
completed the requested data transfer. The blitter is now ready to accept another task.

This bit generates a level 3 interrupt.

Disk Interrupt

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts.

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates
a level 5 interrupt

Bit 1, DSKBLK, indicates “disk block finished.” It is used to indicate that the specified

disk DMA task that you have requested has been completed. This bit generates a level 1
interrupt.

More information about disk data transfer and interrupts may be found in chapter 8,
“Interface Hardware.”

Serial Port Interrupts

The following serial interrupts are associated with the specified bits of the interrupt
registers.

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data
that is ready to read. This bit generates a level 5 interrupt.

Bit 0, TBE (for “transmit buffer empty”), specifies that the output buffer of the UART

needs more data and data can now be written into this buffer. This bit generates a level
1 interrupt. '

System Control Hardware 211

DMA Control

Many different direct memory access (DMA) functions occur during system operation.
There is a read address as well as a write address to the DMA register so you can tell
which DMA channels are enabled.

The address names for the DMA register are as follows:
DMACONR - Direct Memory Access Control - read-only.
DMACON - Direct Memory Access Control - write-only.

The contents of this register are shown in table 7-5 (bit on if enabled).

212 System Control Hardware

Table 7-6: Contents of DMA Register

Bit

Number Name Function

15 SET/CLR The set/reset control bit. See description of bit
15 under “Interrupts’ above.

14 BBUSY Blitter busy status - read-only

13 BZERO Blitter zero status - read-only. Remains 1
if, during a blitter operation, the blitter output
was always zero.

12,11 Unassigned

10 BLTPRI Blitter priority. Also known as “blitter-nasty.”

When this is a 1, the blitter has full (instead of
partial) priority over the 68000.

9 DMAEN DMA enable. This is a master DMA enable bit. It
enables the DMA for all of the channels at bits 8-0.

8 BPLEN Bit-plane DMA enable

7 COPEN Coprocessor DMA enable

6 BLTEN Blitter DMA enable

5 SPREN Sprite DMA enable

4 DSKEN Disk DMA enable

3-0 AUDXEN Audio DMA enable for channels 3-0 (x =3 - 0).

For more information on using the DMA, see the following chapters:
Sprites - chapter 4, “Sprite Hardware”
Bit-planes - chapter 3, “Playfield Hardware”
Blitter - chapter 6, “Blitter Hardware”
Disk - chapter 8, “Interface Hardware”
Audio - chapter 5, “Audio Hardware”

Copper - chapter 2, “Coprocessor Hardware”

System Control Hardware 213

Chapter 8

INTERFACE HARDWARE

Introduction

This chapter covers the ways in which the Amiga talks to the outside world, including
the following features:

o Mouse/joystick/light pen ports

Interface Hardware 215

o Disk controller

o Keyboard

o Parallel I/O interface

o RS-232-C compatible serial interface (for external modems or serial devices)

o RAM cartridge slot (for expansion to 512K bytes)

o Expansion bus interface

o Audio output jacks

o Video output connectors (RGB, NTSC, RF modulator)

Controller Port Interface

On the side of the computef, there are two nine-pin connectors that can be used for
many different kinds of controllers. Figure 8-1 shows one of the two computer connec-
tors and the corresponding face-on view of the typical controller plug.

Face View —
Controller Plug

Face View —
Computer Connector

Figure 8-1: Controller Plug and Computer Connector

216 Interface Hardware

READING THE CONTROLLER PORT

Mouse controllers, joysticks, proportional controllers, and lightvpens use the same con-
nector, but they sometimes have considerably different functions. Therefore, the pins
function differently depending on the type of controller used.

Mouse/Trackball Controllers

The inputs for the mouse or trackball are the same as those for the joystick switches in
these ways:

o The joystick “right” and “back” switches are the same as the pins used for
mouse or trackball horizontal motion detection.

o The joystick ‘“left” and ‘“forward” switches are the same as the pins used for
mouse or trackball vertical motion detection.

Pulses enter these inputs from the mouse or trackball and are converted into an up
count or a down count when motion occurs. In the following discussion only the mouse
action is described; the trackball activity is identical.

Direction of Motion versus Count

Imagine that the mouse is being moved on the table over an exact image of the screen
itself. The movements of the on-screen object controlled by the mouse correspond

exactly to the movements the user makes with the mouse itself (all directions of move-
ment are exactly the same).

The counter counts up when the mouse is moved to the right or “down” (toward you).
The counter counts down when the mouse is moved to the left or “up” (away from you).

The coordinates X,Y indicate the controlled object’s position on the screen. The coordi-

nates X=0, Y=0 are at the upper left-hand corner of the screen, and the coordinates
X=Xmax, Y=Ymax are at the lower right-hand corner.

Interface Hardware 217

Reading tke Cozuters

The mouse/trackball counter contents can be accessed by reading register addresses
named JOYODAT and JOYIDAT. These contain the counts for the left (0) and the
right (1) controller ports.

The contents of each of these 16-bit registers are as follows:

Bits 15-8 Mouse/trackball vertical count
Bits 7-0 Mouse/trackball horizontal count

Counter Limitations

These counters will “wrap around” in either the positive or negative direction. If you
wish to use the mouse to control something that is happening on the screen, you must
read the counters once each vertical blanking period and save the previous contents of
the registers. Then you can subtract to determine direction of movement and speed.

The counter contents must be read once each vertical blanking time to find out if the
user moved the mouse since counters were last read.

The mouse produces about 200 count pulses per inch of movement in either a horizontal
or vertical direction. Vertical blanking happens once each 1/60th of a second. If you
read the mouse once each vertical blanking period, you will most likely find a count
difference (from the previous count) of less than 127. (Only if a usér moves the mouse at
a speed of more than 72 inches per second will it exceed this count—an unlikely hap-
pening).

If you subtract the current count from the previous count, the absolute value of the
difference will represent the speed. The sign of the difference (positive or negative),

along with the sign of the previous and current values, lets you determine which direc-
tion the mouse is traveling.

The example shown in table 8-1 treats both counts as unsigned values, ranging from 0 to
255. A count of 100 pulses is measured in each case.

218 Interface Hardware

Table 8-2. Determusiug thie Duectidn of the Mouse

Previous Current

Count Count Direction
200 100 Up (Left)
100 200 Down (Right)
200 45 Down *
45 200 Up #*

Notes for table 8-1:

* Because 200-45 = 155, which is more than 127, the true count must be 255 - (
200-45) = 100; and the direction is down.

*+ 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count
must be 255 + (-155) = 100; and the direction is up.

There are two buttons on the Amiga mouse. However, the control circuitry supports
mice and trackballs with as many as three buttons if desired.

o Button 1 (left button on Amiga mouse) is connected to pin 6 of the controller
port. Trigger-lines are read for each of the controller ports by reading PA7
(port 1 fire button) or PA6 (port O fire button) of the odd-addressed 8520 peri-

pheral ports. A logic state of 1 means “switch open.” A logic state of 0 means
“switch closed.”

o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller
ports. It is read as one of the potentiometer ports. See ‘“Reading Proportional
Controllers” for more information. High resistance indicates “switch open.” Low

- resistance indicates “switch closed.”

o DButton 3, when used, is connected as the other proportional controller input.
This is pin 5 of the controller ports.

Interface Hardware 219

Joystick Controllers

The joystick controllers have four simple direction switches and one trigger button. The
direction switches are connected to pins 1, 2, 3, and 4 as FORWARD, BACK, LEFT,
and RIGHT. The trigger button is connected to pin 6.

The normal state of each of the switches is open. This places a logic 1 on each of the
input lines. When a switch is closed, it is connected to ground (pin 8), placing a logic 0
on the line.

Reading the joystick input data logic states is not so simple, howei'er, because the data
registers for the joysticks are the same as the counters that are used for the mouse or
trackball controllers. These are named JOYODAT (port 0) and JOY1DAT (port 1).

Table 8-2 shows how to interpret the data once you have read it from these registers.

The true logic state of the switch data in these registers is “1 = switch closed.”

Table 8-2: Interpreting Data from JOYODAT and JOY1DAT

Data Bit Interpretation
1 True logic state of “right” switch.
9 True logic state of “left” switch .

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0
to obtain the logic state of the “back’ switch.

9 (XOR) 8 You must calculate the exclusive-or of bits 9 and 8
to obtain the logic state of the ‘“forward’ switch.

Proportional Controllers

Each of the game controller ports can handle two variable-resistance input devices, also
known as proportional input devices. This section describes how the positions of the
proportional input devices can be determined. There are two common types of propor-
tional controllers: the ‘“paddle” controller pair and the X-Y proportional joystick. A
paddle controller pair consists of two individual enclosures, each containing a single
resistor and fire-button and each connected to a common controller port input connec-
tor. The typical connection is as shown in figure 8-2.

220 Interface Hardware

LEFT PADDLE RIGHT PADDLE

Resistive Element Resistive Element
——— ANVMAA——— ——— MWW
Pin7 Pin9 Pin7 Pinb
l«————— Fire Button l«————— Fire Button
Pin 3 Pin 4

(All pin numbers refer to a common connection to a single controller input port.)

Figure 8-2: Typical Paddle Controller ConnectiQn

In an X-Y proportional joystick, the resistive elements are connected individually to the
X and Y axes of a single controller enclosure (instead of being in separate enclosures).
Typical connections are shown in table 8-3.

Interface Hardware 221

Table 8-3: Typical Controller Connections

Mouse,
Trackball, Proportional X-Y Variable
: Driving Controller Proportional
Pin Joystick Controller (Pair) Joystick
1 Forward# V-pulse (unused) (unused)
2 Back* H-pulse (unused) (unused)
3 Left* VQ-pulse Left button Button 1
4 Right* HQ-pulse Right button Button 2
5 (unused) Button (3) Right POT POT X
(if used)
6 Button(l) Button(l) (unused) (unused)
7 +5V +5V +5V +5V
8 GND GND GND GND
9 Button(2) Button(2) Left POT POTY

(if used)

An asterisk (*) at the end of a name indicates active low.

Reading Proportional Controller Buttons

For the two-control paddle controllers, the left and right joystick inputs serve as the fire
buttons for the left and right controllers.

Interpreting Proportional Controller Position

Interpreting the position of the controller requires some preliminary work. This is an

activity normally done during the vertical blanking interval (and is part of the operating
system function).

During vertical blanking, you write a value into an address called POTGO. For a stan-
dard X-Y joystick, this value is hex 0001. Writing to this register starts the operation of

some special hardware that reads the potentiometer values and sets the values contained
in the POT registers (described below) to zero.

222 Interface Hardware

Tke read circuitry stays in a reset state for tle first seven or eight horizoutal video scan
lines. Following the reset interval, the circuit allows a charge to begin building up on a
timing capacitor whose charge rate will be controlled by the position of the external con-
troller resistance. For each horizontal scan line thereafter, the circuit compares the
charge on the timing capacitor to a preset value. If the charge is below that value, one
count is added to the counter for that POT. If it is above that value, the counter value
will be held at the stopped value until the next POTGO is issued.

Effects of Different Resistance on Charging Rate

You normally issue POTGO at the beginning of a video screen, then read the values in
the POT registers during the next vertical blanking period, just before issuing POTGO
again. (Again note that this is an automatic feature of the operating system.)

Nothing in the system prevents the counters from overflowing (wrapping past a count of

255). However, the system is designed to insure that the counter cannot overflow within

the span of a single screen. This allows you to know for certain whether an overflow is
indicated by the controller.

Although there are 262 or 263 possible horizontal scan lines on a single NTSC video
screen, each of the POT counters is eight bits wide, which allows a maximum of 255 in

any counter. This is why the control circuitry is delayed seven or eight horizontal scan
lines—to limit the maximum POT count value to 255.

Proportional Controller Registers

The following registers are used for the proportional controllers:

POTODAT - port 0 data (vertical/horizontal)
POTI1DAT - port 1 data (vertical/horizontal)

Bit positions:

Bits 15-8 POTOY value or POT1Y value
Bits 7-0 POTOX value or POT1X value

All counts are reset to zero when POTGO is written. Counts are normally read one
screen after the scan circuitry is enabled.

Interface Hardware 223

Potentiometer Specifications

The resistance of the potentiometers should be a linear taper. Based on the design of
the integrating analog-to-digital converter used, the maximum resistance should be no
more than 528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is

based on a charge capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 mil-
liseconds for charge to full value (one video frame time).

Light Pen

A light pen can be connected only to the left controller port (port 0). Its connections are
not shown in table 8-3. The pins controller port pins normally used by a light pen are
shown in table 8-4.

Table 8-4: Light Pen Pin Usage

Pin Number Usage
7 +5V
8 GND
5 Pen-pressed-to-screen
6 Capture beam position

The signal called “pen-pressed-to-screen” is generally a single switch to ground, normally
open, which is actuated by a switch in the nose of the light pen. Note that this switch is
connected to one of the potentiometer inputs and must be treated as such. The signal
called “capture beam position” is connected as the trigger switch of a normal joystick.

The principles of light pen operation are as follows (assuming the light pen has been
enabled):

1. Just as the system exits vertical blank, the capture circuitry for the light pen is
automatically enabled.

2. The video beam starts to create the picture, sweeping from left to right for each
horizontal line as it paints the picture from the top of the screen to the bottom.

3. The light pen creates a trigger signal at the moment that the video beam passes
the window in the nose of the pen.

224 Interface Hardware

4. This trigger signal tells the internal circuitry to capture and save the current
contents of the beam register, VPOSR. This allows you to determine where the
pen was placed by reading the exact horizontal and vertical value of the counter
beam at the instant the beam passed the light pen.

Reading the Light Pen Registers

The light pen register is at the same address as the ’bea,m counter, VPOSR and
VHPOSR. The bits are as follows:

VPOSR: Bit 15 Long frame
Bits 14-1 Unused
Bit 0 V8 (most significant bit of vertical position)

VHPOSR: Bits 15-8 V7-VO (vertical position)
Bits 7-0 HS8-H1 (horizontal position)

The software can refer to this register set as a long word whose address is VPOSR.

The positional resolution of these registers is as follows:

Vertical 1 scan line in non-interlaced mode
2 scan lines in interlaced mode

Horizontal 2 low-resolution pixels in either
high- or low-resolution

To enable the light pen input, write a 1 into bit 3 of BPLCONO (bit-plane control regis-
ter 0). Once the light pen input is enabled and the light pen issues a trigger signal the
value in VPOSR is frozen. (The counters still count; only the read value is frozen.) This
freeze is released at the end of internal vertical blanking (vertical position 20). No single

bit in the system can tell you that the light pen has been triggered, but it can be deter-
mined as follows:

1. Read (long) VPOSR twice.

2. If both values are not the same, the light pen has not triggered since the last
top-of-screen (V = 20).

Interface Hardware 225

If both values are the same, mask off the upper 15 bits of the 32-bit word and
compare it with the hex value of $10500 (V =261).

If the VPOSR value is greater than $10500, the light pen has not triggered since
the last top-of-screen. If the value is less, the light pen has triggered and the
value read is the screen position of the light pen.

A somewhat simplified method of determining the truth of the light pen value involves

instructing the system software to read the register only during the internal vertical
blanking period of 0 <V 20:

1.

2.

Read (long) VPOSR once, during the period of 0 <V 20.

Mask off the upper 15 bits of the 32-bit word and compare it with the hex value
of $10500 (V=261).

If the VPOSR value is greater than $10500, the light pen has not triggered since
the last top-of-screen. If the value is less, the light pen has triggered and the
value read is the screen position of the light pen.

Adapting to Special Controllers |

The Amiga can read and interpret controllers other than the standard joystick or pro-
portional controller by using the control lines built into the POTGO register (address
DFF034) to redefine the functions of some of the controller port pins.

Table 8-5 is a copy of part of the POTGO register bit description, paraphrased from
appendix A of this manual. POTGO (DFF034) is the write-only address for the pot con-
trol register. POTGOR (DFFO016) is the read-only address for the pot control register.

The pot-control register controls a four-bit bidirectional I/O port that shares the same
four pins as the four pot inputs.

226 Interface Hardware

Table 8-5: POTGO Register

Bit
Number Name Function
15 OUTRY = Output enable for right port pin 9
14 DATRY I/O data right port pin 9
13 OUTRX Output enable for right port pin 5
12 DATRX I/O data right port pin 5
11 OUTLY Output enable for left port pin 9
10 DATLY 1I/O data left port pin 9
09 OUTLX = Output enable for left port pin 5
08 DATLX I/O data left port pin 5
07-01 X Reserved for chip identification
00 START Start pots (dump capacitors, start counters)

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a
four-bit input/output port. This provides you with the equivalent of two additional pins
on each of the two controller ports for general purpose I/O, as shown in table 8-5.

If you set any of the “OUT...” bits high, it disconnects the potentiometer control circui-
try from the port. The current state of the “DAT...” pins in this register—1 or 0—will
appear on the specified port pin. You set the state of the OUT... and DAT... pins by
writing into this register through the POTGO address. There are large capacitors on
these lines, and it can take up to 300 microseconds for the line to change state.

To use this register as an input, sensing the current state of the pot pins, write all Os to
POTGO. Thereafter you can read the current state by using read-only address POT-
GOR. Any bits set as inputs will be affected by the START bit of the POTGO register.
You can also use these signals for fire-buttons. To do this, drive the line high (set both
OUT... and DAT... to1). When the button is pressed, the line will be shorted to
ground, and reading POTGOR will produce a 0. If the button is not pressed, the read-
ing will be 1.

Disk Controller

The disk controller in this system can handle four double-sided, 3 1/2- or 5 1/4-inch disk
drives. A 3 1/2-inch drive is installed in the basic unit. The other drives are external to
the main box.

Interface Hardware 227

Control of the disk operations is distributed among several registers in the system
Among the control types are

0 Selection, motor control, sensing

o Disk DMA channel control, DMA enable.
o Disk data read/write.

o Disk format control.

o Interrupts generated.

DISK SELECTION, CONTROL, AND SENSING

The disk subsystem uses two 8520 ports plus one FLAGS interrupt port. The specific
bits used are detailed in table 8-6.

CIA A ($BFE001), port A, has four input bits allocated to the disk subsystem. CIA B
($BFD000), port B, is entirely dedicated to output bits for the disk.

Table 8-6- Disk Subsystem

Port Pin Name Function
CIAA PAS DSKRDY* - Disk ready (active low).

CIAA PA4 DSKTRACKO* Disk heads currently positioned
over track zero (active low).

CIAA PA3 DSKPROT* Disk is write protected (active low).

CIAA PA2 DSKCHANGE#* Disk has been removed from
the drive. The drives that support this
signal latch it until the next time the
heads are stepped (active low).

228 Interface Hardware

CIAB PBY DSKMOTOR* Disk motor control (active low). This
signal is nonstandard on the Amiga system.
Each drive will latch the motor signal at
the time its SELn* signal turns on.

The disk drive motor will stay in this

state until the next time SELn* turns on,
at which time it will latch the new value

of DSKMOTOR*. All software that selects
drives should set up the motor signal before
selecting any drives. The drive will
“remember”’ the state of its motor when

it is not selected. All drive motors turn

off after system reset.

CIA Bv PB6 DSKSEL3* Select drive 3 (active low).
CIAB PB5 DSKSEL2+* Select drive 2 (active low).
CIAB PB4 DSKSEL1%* Select drive 1 (active low).
CIAB PB3 DSKSELO* Select drive O (internal drive)

(active low).

CIAB PB2 DSKSIDE* Specify a particular head of
the disk. Zero implies the upper head.

CIAB PB1 DSKDIREC Specify the direction to seek

the heads. Zero implies seek towards
the center spindle. Track zero is
at the outside of the disk.

CIAB PBO DSKSTEP* Step the heads of the disk.

This signal should always be used as

a pulse (first low, then high).

Leaving this line low while changing
the SEL lines confuses the change logic

CIAB FLAG DSKINDEX* Disk index pulse (BFDDOO, bit 4).
Can be used to create level 6 interrupt

Interface Hardware 229

Disk DMA Channel Control

Data is normally transferred to the disk by direct memory access (DMA). The disk
DMA is controlled by four items:

o Pointer to the area into which or from which the data is to be moved
o Length of data to be moved by DMA
o Direction of data transfer (read/write)

o DMA enable

Pointer to Data

You specify the 19-bit-wide byte address from which or to which the data is to be
transferred. The lowest bit (bit 0) of this address is treated as a 0. (You cannot start
data on an odd-byte boundary.)

This address must be written into registers named DSKPTH and DSKPTL. DSKPTH
gets the high three bits of the pointer, DSKPTL gets the low sixteen bits of the pointer.
These registers are positioned at two consecutive word addresses on a long word boun-

dary within the register space. This allows you to initialize both registers by a single
write of a long word to the address of DSKPTH.

Length, Direction, DMA Enable

All of the control bits relating to this topic are contained in a single register, called
DSKLEN. Its bits are shown in table 8-7.

230 Interface Hardware

Table 8-7: DSKLEN Register

Bit
Number Name Usage
15 DMAEN Disk DMA enable
14 WRITE Disk write (RAM — disk if 1)
13-0 LENGTH Number of words to transfer

The bit called DMAEN and the system DMA control bit for the disk must be set in

order to allow disk DMA to occur. See chapter 7, “System Control Hardware,” for more
information about system DMA controls.

The hardware requires a special sequence in order to start DMA to the disk. This
sequence prevents accidental writes to the disk. In short, the DMAEN bit in the
DSKLEN register must be turned on twice in order to actually enable the disk DMA
hardware. Here is the sequence you should follow:

1. Set this register to $4000, thereby forcing the DMA for the disk to be turned off.
2. Put the value you want into the DSKLEN register.

3. Write this value again into the DSKLEN register. This actually starts the
DMA.

4. After the DMA is complete, set the DSKLEN register back to $4000, to prevent
accidental writes to the disk.

As each data word is transferred, the LENGTH value is decremented. As each transfer
occurs, the value of the pointer DSKPTH, DSKPTL is incremented. This points to the

area where the next word of data will be written or read. When the LENGTH value
counts down to O, the transfer stops.

The recommended method of reading from the disk is to read an entire track into a
buffer and then search for the sector(s) that you want. With this process you need to
read from the disk only once for the entire track. In addition, there are no time-critical
sections in reading this way, so that other high-priority subsystems (such as graphics or
audio, both of which have stringent real time constraints) are allowed to run.

Interface Hardware 231

If you have too little memory for track buffering (or for some other reason decide not to
read a whole track at once), the disk hardware supports a limited set of sector-searching
facilities. There is a register that may be polled to examine the disk input stream.

There is a hardware bug that causes the last three bits of data sent to the disk to be

lost. Also, the last word in a disk-read DMA operation may not come in (that is, one
less word may be read than you asked for).

OTHER REGISTERS IN DISK OPERATIONS

A number of other registers are also associated with disk operations, as specified below.

DSKBYTR - Disk Data Byte and Status Read

This register is the disk-microprocessor data buffer. In read mode, data from the disk is
loaded into this register one byte at a time. As each byte is received into the register,
the BYTEREADY bit is set true. BYTEREADY is cleared each time the DSKBYTR
register is read.

DSKBYTR is the register normally used by system software to synchronize the processor

to the disk rotation before issuing a read or write under DMA control. The bits are
shown in table 8-8.

232 Interface Hardware

Table 8-8: DSKBYTR Register

Bit

Number Name Function

15 BYTEREADY Indicates that this register contains
a valid byte of data (reset by
reading this register).

14 DMAON The DMA bit (in DSKLEN) is enabled
and the DMACON bits are on, too. All
DMA bits must be on for this to be true.

13 DISKWRITE This disk write bit (in DSKLEN) is enabled.

12 WORDEQUAL Indicates the DISKSYNC register equals the
disk input stream. This bit is true only
while the input stream matches the sync
register (as little as two microseconds).

11-8 Unused

7-0 DATA - Disk byte data.

ADKCON and ADKCONR - Audio and Disk Control Register

ADKCON is the write address and ADKCONR is the read address for this register. The

bottom eight bits of the register are used for the audio circuitry. The other bits are
shown in table 8-9.

Interface Hardware 233

Bit
Number

15

14
13

12

11

10

3-0

Table 8-9: ADKCON and ADKCONR Register

Name

CLR/SET

PRECOMP1
PRECOMPO

MFMPREC

UARTBRK

WORDSYNC

MSBSYNC

FAST

ATPER3-0

ATVOL3-0

Function

Same use as in the DMA enable register.

Bit 15 must be a 1 if the
register bits are to be set.
Bit 15 is a 0 if the bits
are to be cleared.

MSB of Precomp specifier
LSB of Precomp specifier

Value of 00 selects none.

Value of 01 selects 140 ns.
Value of 10 selects 280 ns.
Value of 11 selects 560 ns.

Value of 0 selects GCR Precomp.
Value of 1 selects MFM Precomp.

Value of 1 forces the output of the Paula
special chip’s serial port to 0 (an RS-232-C break).

Value of 1 enables synchronizing and starting

of DMA on disk read of a word. The word on which
to synchronize must be written into the DSKSYNC
address (DFFO7E).

Value of 1 enables sync on MSBit (GCR).

Value of 1 selects two microseconds

per bit cell (usually MFM), 0 selects four
microseconds per bit (usually GCR).

Audio attach-period controls (not disk-related).

Audio attach-volume controls (not disk-related).

One form of GCR format is the format used by the Apple[tm] computer. Data bytes on
Apple-formatted disks always have the most significant bit set to a 1. When reading a
GCR formatted disk, the software must use a translate table called a nibble-izer to

234 Interface Hardware

assure that all data written to the disk conforms with this bit-setting. Bit 9, when a 1,
tells the disk controller to look for this sync bit on every disk byte.

DSKSYNC - Disk Input Synchronizer

The DSKSYNC register is used to synchronize the input stream. If WORDEQUAL is
enabled in ADKCON, no data is transferred to memory until a word is found in the
input stream that matches the word in the DSKSYNC register. In addition, the
DSKSYNC bit in INTREQ is set when the input stream matches the DSIKSYNC regis-
ter. The DSKSYNC bit in INTREQ is independent of the WORDEQUAL enable.

DSKDAT and DSKDATR Disk DMA Data Registers

These register addresses are for testing purposes only.

DSKDAT is write-only and DISKDATR is a read-only, early-read dummy address. This
register is the disk DMA data buffer. It contains two bytes of data that are either sent
(written) to or received (read) from the disk. The write mode is enabled by bit 14 of the
DSKLEN register. The DMA controller automatically transfers data to or from this
register and RAM.

DISK INTERRUPTS

The disk controller can issue two kinds of interrupts:

o DSKSYNC (level 5, INTREQ bit 12)—the input stream matches the DSKSYNC
register.

o DSKBIK (level 1, INTREQ bit 1)—disk DMA has completed.

Each of these is explained further in the sections titled “Length, Direction, DMA
Enable” and “Other Registers Involved with Disk Operations.” See chapter 7, “System
Control Hardware,” for more information about interrupts.

Interface Hardware 235

The Keyboard

The keyboard is interfaced to the system through ome pair of lines connected to the
odd-addressed 8520 CIA chip. These lines are CNT, for the keyboard clock (input from
keyboard), and SP, for keyboard data (input or output).

HOW THE KEYBOARD DATA IS RECEIVED

The CNT line is used as a clock for the keyboard. On each transition of this line, one
bit of data is clocked in from the keyboard. The keyboard sends this clock when each
data bit that is to be sent is stable on the SP line. The clock is an active low pulse.
The rising edge of this pulse clocks in the data.

The 8520 is set up to use the CNT line as a clock and the SP line as a data input to an
internal serial shift register. Appendix F contains most of the data sheet for the 8520
and provides more information for interested parties.

After a data byte has been received from the keyboard, an interrupt (from the 8520) is
issued to the processor. The keyboard waits for a handshake signal from the system
before transmitting any more keystrokes. (The handshake is issued by the processor
pulsing the SP line low for a minimum of 75 microseconds.)

If another keystroke is received before the previous one has been accepted by the proces-
sor, the keyboard-processor (internal to keyboard) holds a type-ahead buffer approxi-
mately 10 “keycodes” long. (Keycodes are explained in the next section).

TYPE OF DATA RECEIVED

The keyboard data is not received in the form of ASCII characters. Instead, for max-
imum versatility, it is received in the form of keycodes. These codes include not only
the down-transition of the key, but also the up-transition. This allows your software to
use both sets of information to determine exactly what is happening on the keyboard.

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke
of the key transmits the value shown here. An upstroke of the key transmits this value
plus $80. The picture of the keyboard at the end of this section shows the positions that
correspond to the description in the paragraphs below.

236 Interface Hardware

The 128 possible key codes are arranged into the logical groups shown below.

00-3F hex

These are key codes assigned to specific positions on the main body of the keyboard and
the numeric pad that contain graphic keys (that is, “A”, but not “Tab”). The key
positions would generally be labeled with country-dependent keys. These keycodes are
best described positionally as shown in figure 8-3 at the end of the keyboard section.

40-4F hex

These are key codes with specific meanings common to most keyboards:

40
41
42
43
44
45
46
4A
4C
4D
4E
4F

50-5F hex

Space

Backspace

Tab

Enter (numeric pad)
Return

Escape

Delete

Numeric pad
Cursor up
Cursor down
Cursor forward
Cursor backward

Key codes for function keys:

50-59

5F

Function keys F1-F10
Help

Interface Hardware 237

60-67 hex

Key codes for qualifier keys:

60 Left shift

61 Right shift

62 Caps lock

63 Control

64 Left ALT

65 Right ALT

66 Left Amiga (command)
67 Right Amiga (command)

88-77 hex

Unassigned.

FO-FF hex

These key codes are used for 6500/01-68000 communication, and are not associated with

a keystroke. They have no key transition flag, and are therefore described completely
by 8-bit codes:

F9 Last key code bad, next key is same code retransmitted
FA Keyboard key buffer overflow

FC Keyboard self-test fail

FD Initiate power-up key stream (for stuck keys)

FE Terminate key stream (from FD)

These key codes may be filtered out by the drivers.

238 Interface Hardware

LIMITATIONS OF THE KEYBOARD

The Amiga keyboard (see figure 8-3) is a matrix of rows and columns, with a key switch
at each intersection. Because of this, it is subject to a phenomenon called “ghosting.”

Ghosting means that certain combinations of keys pressed simultaneously will cause
extra (“ghost”) key codes to be transmitted. For example, press “A” and “S” simultane-
ously and hold them down. Notice that “A” and “S” are transmitted. While still hold-
ing them down, press “Z” and observe that both “X” and “Z” are transmitted. In this
case, “X” is a ghost key.

The keyboard is designed so that this will never happen during normal typing, only
when unusual key combinations like the one just described are pressed. Normally, the
keyboard will appear to have “N-key rollover,” which means that you will run out of
fingers before generating a ghost character.

NOTE

There are seven keys that are not part of the matrix, and thus do not contri-
bute to generating ghosts. These keys are: CTRL (control), the two SHIFT
keys, the two Amiga keys, and the two ALT keys.

ESC F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 DEL
45 | 50 | 561 | 52 | 563 | 54 | 55 | 56 | 57 | 568 | 59 | 46
N 1 s P E B F [F F s o F [' NS R
00 | 01]02}03|{04|]05[{06]07|08|09]|]0Aj0B|OC|OD| 41 3D} 3E | 3F
TAB Q w E R T Y u i o} P { ! HELP 4 5 6
42 10111112113]14|15]|16]17 |18 119 J1A] 1B | 44 | bF 2D| 2E| 2F
CTRL Eégi A s o} F G H J K L , " RETURN * 1 2 3
63]162]20121]22]123]|24|25[26]|27]|28]29]|2A 4C 1D 1E|1F
SHIFT z X c v B N M f > 7 SHIFT d - 0 .
60 | 30 |31|32]33|34|35(36|37]38|39]3A 61 |4F|4E OF 3C
ALT A Aﬂ ALT * - ENTER
64 | 66 40 67 | 65 4D 4A1 43

Figure 8-3: The Amiga Keyboard, Showing Keycodes in Hexadecimal

Interface Hardware 239

Parallel Input/Output Interface

The general-purpose parallel interface is a 25-pin male connector on the back panel of
the computer. This connector is generally used for a parallel printer.

For pin connections, see appendix E.

Serial Interface

A 25-pin D-type female connector on the back panel of the computer serves as the gen-
eral purpose serial interface. This connector can drive a wide range of different peri-
pherals, including an external modem or a serial printer.

For pin connections, see appendix E.

INTRODUCTION TO SERIAL CIRCUITRY

The circuit that controls the serial link to the outside world is called a UART, which is
short for Universal Asynchronous Receiver/Transmitter. The UART is able to commun-
icate at baud rates (bit-rate of transmission of data) that you preset. It can receive or
send data with a programmable length of eight or nine bits.

The UART is also capable of detecting overrun errors, which occur when some other sys-
tem sends in data faster than you remove it from the data-receive register. There are
also status bits that you can read to find out when the receive bufler is full or when the
transmit buffer is empty. An additional status bit is provided that indicates “all bits
sent.”” All of these topics are discussed below.

SETTING THE BAUD RATE

Baud rate (rate of transmission) is controlled by the contents of the register named
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits. If you consider the con-
tents of these bits to be the number N, then N+1 color clocks (each 279.4 ns) occur

between samples of the state of the input pin (for receive) or between transmissions of
output bits (in the transmit mode).

240 Interface Hardware

SETTING THE RECEIVE MODE

The number of bits that are to be received before the system tells you that the receive
register is full may be defined either as eight or nine. In either case, the receive circuitry
expects to see one start bit, eight or nine data bits, and at least one stop bit.

Receive mode is set by bit 15 of SERPER. Bit 15 is a 1 if if you chose nine data bits for
the receive-register full signal, and a O if you chose eight data bits. The normal state of
this bit for most receive applications is a 0.

SERPER is a write-only register.

CONTENTS OF THE RECEIVE DATA REGISTER

The serial input data-receive register is 16 bits wide. It contains not only the input data
received but also certain status bits, which are explained below.

The data bit positions defined for read-data are taken from the “back-up” register,
which is connected to the receive-data serial shift register.

The data is received, one bit at a time, into a serial-to-parallel shift register. When the
proper number of bits has been received, the contents of this register are transferred to

the serial data read register (SERDATR) shown in table 8-10, and you are signaled that
there is data ready for you.

The back-up register is called that because immediately after the transfer of data takes
place, the receive shift register again becomes ready to accept new data. After receiving
the receiver-full interrupt, therefore, you will have up to one full character-receive time

(8 to 10 bit times) to accept the data and clear the interrupt.

Table 8-10 shows the definitions of the various bit positions within SERDATR.

Interface Hardware 241

Bit
Number Name

15 OVRUN

14 RBF
13 TBE
12 TSRE

242 Interface Hardware

Table 8-10: SERDATR Register

Function

OVERRUN bit

(Mirror—also appears in the interrupt request
register.) Indicates that another byte of data
was received before the previous byte was picked
up by the processor. To prevent this condition,
it is necessary to reset the RBF bit (bit 11) .
(receive-buffer-full) in the interrupt request
register (INTREQ).

" READ BUFFER FULL

(Mirror—also appears in the interrupt request
register.) When it is a 1, it says that there is

data ready to be picked up by the processor.

After reading the contents of this data register,
you must reset the RBF bit in INTREQ to prevent
an overrun.

TRANSMIT BUFFER EMPTY

(Not a mirror—interrupt occurs when the
buffer becomes empty.) When it is a1,

the data in the output data register (SERDAT)
has been transferred to the serial output shift
register, so SERDAT is ready to accept another
output word. This is also true when the buffer
is empty.

This bit is normally used for full-duplex operation.

TRANSMIT SHIFT REGISTER EMPTY
When this bit is a 1, the output shift register
has completed its task, all data has been
transmitted, and the register is now idle.

If you stop writing data into the output
register (SERDAT), then this bit will

become a 1 after both the word currently

in the shift register and the word

placed into SERDAT have been transmitted.

This bit is normally used for half-duplex operation.

11 RXD Direct read of RXD pin on Paula chip.
10 Not used at this time

9 STP Stop bit if 9 data bits are specified for
receive.

8 STP Stop bit if 8 data bits are specified for
receive,
OR
DBS8 9th data bit if 9 bits are specified for
receive.

7-0 DB7-DB0 Low 8 data bits of received data. Data
is TRUE (data you read-is the same
polarity as the data expected).

HOW OUTPUT DATA IS TRANSMITTED

You send data out on the transmit lines by writing into the serial data output register
(SERDAT). This register is write-only.

Data will be sent out at the same rate as you have established for the read, and this
data is contained in the serial data period register (SERPER) shown above. Immediately

after you write the data into this register, the system will begin the transmission at the
baud rate you selected.

At the start of the operation, this data is transferred from SERDAT into a serial shift
register. When the transfer to the serial shift register has been completed, SERDAT can
accept new data; the TBE interrupt signals this fact.

Data will be moved out of the shift register, one bit during each time interval, starting
with the least significant bit. The shifting continues until, following the last shift, the

UART detects the condition “shift-register-empty,” which means that only Os remain in
the register.

SERDAT is a 16-bit register that allows you to control the format (appearance) of the
transmitted data. To form a typical data sequence, such as one start bit, eight data

bits, and two stop bits, you write into SERDAT the contents shown in figures 8-4 and
8-5.

Interface Hardware 243

15 987 o

00000001 |«—=8bits data—>

»
Data gets shifted out this way.

Figure 8-4: Starting Appearance of SERDAT and Shift Register

15 987 0

0000000000000000 -—>| 1]
- one hit

All zeros from last shift —

Figure 8-5: Ending Appearance of Shift Register

‘The register stops shifting and signals “shift register empty” (TSRE) when there is a 1
bit present in the bit-shifted-out position and the rest of the contents of the shift regis-

ter are 0s. When new nonzero contents are transferred into this register, shifting begins
again.

SPECIFYING THE REGISTER CONTENTS

You should write the data you wish to transmit as the low 8 (or 9 if you wish) bits of
this output register (SERDAT). Above the data bits (in bits 8 and above or bits 9 and
above) you write 1 bits for however many stop bits you transmit with the data.

244 Interface Hardware

Normally, you send either one or two stop bits. (See figure 8-4.)

The transmission of the start bit is independent of the contents of this register. One
start bit is automatically generated before the first bit (bit 0) of the data is sent.

Writing this register starts the data transmission. If this register is written with all
zeros, no data transmission is initiated.

Audio Output Connections

The Amiga has two different forms of audio output for the audio channels:

o Stereo output jacks

A pair of “RCA” jacks, designed to be connected to a stereo amplifier.

o RF-Audio

The channel 3/4 RF modulator will provide sound through the speaker of your
television set when the television is used to provide the computer’s display.
Both channels of audio are provided at this connector. However, the RF modu-

lator on initial shipments of Amiga computers combines the signals and
transmits monaural sound.

Display Output Connections

A 23-pin connector on the back of the Amiga contains signals for two different types of

video output. A separate cable assembly will be made up for each different type of
video. The types are listed below.

o RGB Monitors (“analog RGB”). Provides four outputs, specifically red (R),
green (G), blue (B), and sync. They can generate up to 4,096 different colors
on-screen simultaneously using the circuitry presently available on the Amiga.

o Digital RGB Monitors. Provides four outputs, distinct from those shown above,
named red (R), green (G), blue (B), half-intensity (I), and sync. All output levels
are logic levels (0 or 1). These outputs allow up to 15 possible color combina-
tions, where the values 0000 and 0001 map to the same output value. (Half
intensity with no color present is the same as full intensity, no color.)

Interface Hardware 245

Appendix A

Register Summary — Alphabetical Order

This appendix contains a short summary, in alphabetical order, of the register set and
the usages of the individual bits.

The addresses shown here are used by the special chips (called “Agnus”, “Denise”, and
“Paula”) for transferring data among themselves. Also, the Copper uses these addresses
for writing to the special chip registers. To write to these registers with the 68000, cal-
culate the 68000 address using this formula:

68000 address = (chip address) + $DFF000

For example, for the 68000 to write to ADKCON (address == $09E), the address would
be $DFFOYE.

>
o

Register Address Write

ADKCON
ADKCONR

AUDXLCH
AUDXLCL

AUDXLEN

09E
010

O0A0
OA2

‘0A4

Agnus/
Read/ Denise/
Paula Function
W P Audio, disk, control write
R P Audio, disk, control read
BIT# USE
15 SET/CLR Set/clear control bit. Determines if bits

written with a 1 get set or cleared. Bits
written with a zero are always unchanged.
CODE PRECOMP VALUE

00 none

01 140 ns

10 280 ns

11 560 ns
(1=MFM precomp 0=CCR precomp)
Forces a UART break (clears TXD) if true.
Enables disk read synchronizing on a word
equal to DISK SYNC CODE, located in
address (3F)*2.
Enables disk read synchronizing on the MSB
(most signif bit). Appl type G(R

14-13 PRECOMP 1-0

12 MFMPREC
11 UARTBRK
10 WORDSYNC

09 MSBSYNC

08 FAST Disk data clock rate control i=fast(2us) 0=slow(4us).

(fast for MEM, slow for MEM or GCR)

07 USE3PN Use audio channel 3 to modulate nothing.

06 USE2P3 Use audio channel 2 to modulate period of channel 3.
05 USE1P2 Use audio channel 1 to modulate period of channel 2.
04 USEOP1 Use audio channel 0 to modulate period of channel 1.

03 USE3VN Use audio channel 3 to modulate nothing.

02 USE2V3 Use audio channel 2 to modulate volume of channel

01 USE1V2 Use audio channel 1 to modulate volume of channel

00 USEOV1 Use audioc channel 0 to modulate volume of channel
NOTE: 1If both period and volume are modulated on the
same channel, the period and volume will be alternated.
First word xxxxxxxx V6-V0 , Second word P15-P0 (etc)

!—'Nw

W A Audio channel x location (high 3 bits)

W A Audio channel x location (low 15 bits)

This pair of registers contains the 18 bit starting address
(location) of audio channel x (x=0,1,2,3) DMA data.

This is not a pointer register and therefore needs

to be reloaded only if a different memory location is to
be outputted.

W P Audio channel x length
This register contains the length (number of words) of
audio channel x DMA data.

AUDXPER

AUDXVOL

AUDxDAT

BLTxPTH
BLIxPIL

BLTxMOD

0A6

0AS

ORAA

050
052

064

W P Audio channel x Period

This register contains the period (rate) of

audio channel x DMA data transfer.

The minimum period is 124 color clocks. This means
that the smallest number that should be placed in
this register is 124 decimal. This corresponds to
a maximum sample frequency of 28.86 khz.

W P Audio channel x volume

This register contains the volume setting for
audio channel x. Bits 6,5,4,3,2,1,0 specify 65
linear volume levels as shown below.

Bit§ Use
15-07 Not used
06 Forces volume to max (64 ones, no zeros)
05-00 Sets one of 64 levels (000000=no output

- (111111=63 1s, one 0)

W P Audio channel x data

This register is the audio chamnel x (x=0,1,2,3)
DMA data buffer. It contains 2 bytes of data that
are each 2's lement and are outputted
sequentially (with digital-to-analog conversion)
to the audio output pins. (LSB = 3 MV) The DMA
controller automatically transfers data to this
register from RAM. The processor can also write
directly to this register. Wwhen the DMA data is
finished (words outputted=length) and the data in
this register has been used, an audio channel
interrupt request is set.

W A Blitter pointer to x (high 3 bits)

W A Blitter pointer to x (low 15 bits)
This pair of registers contains the 18-bit address
of blitter source (x=A,B,C) or destination (x=D)
DMA data. This pointer must be preloaded with the
starting address of the data to be processed by
the blitter. After the blitter is finished, it
will contain the last data address (plus increment
and modulo) .

LINE DRAW BLTAPTL is used as an accumulator
LINE DRAW register and must be preloaded with
LINE DRAW the starting value of (2Y-X) where
LINE DRAW Y/X is the line slope. BLICPT and
LINE DRAW BLTDPT (both H and L) must be

LINE DRAW preloaded with the starting address
LINE DRAW of the line.

W A Blitter modulo x

This register contains the modulo for blitter
source (x=A,B,C) or destination (x=D). A modulo
is a number that is automatically added to the
address at the end of each line, to make the

BLTAFWM
BLTALWM

BLTxDAT

BLTDDAT

BLTCONO
BLTCON1

€-V

044
046

074

address point to the start of the next line. Each
source or destination has its own modulo, allowing
each to be a different size, while an identical
area of each 1s used in the blitter operation.
LINE DRAW BLTAMOD and BLTBMOD are used as slope
LINE DRAW storage registers and must be preloaded
LINE DRAW with the values (4Y-4X) and (4Y)

LINE DRAW respectively. Y/X= line slope.

LINE DRAW BLTCMOD and BLTDMOD must both be

LINE DRAW preloaded with the width (in bytes)
LINE DRAW of the image into which the line is
LINE DRAW being drawn (normally two times the
LINE DRAW screen width in words) .

W A Blitter first-word mask for source A
W A Blitter last-word mask for source A
The patterns in these two registers are ANDed with
the first and last words of each line of data from
source A into the blitter. A zero in any bit
overrides data from source A. These registers
should be set to all 1s for £ill mode or for
line-drawing mode.

W A Blitter source x data register

This register holds source x (x=A,B,C) data for
use by the blitter. It is normally loaded by the
blitter DMA channel; however, it may also be
preloaded by the microprocessor.

LINE DRAW BLTADAT is used as an index register
LINE DRAW and must be preloaded with 8000.
LINE DRAW BLIBDAT is used for texture; it must
LINE DRAW be preloaded with FF if no texture
LINE DRAW (solid line) is desired.

Blitter destination data register
This register holds the data resulting from each
word of blitter operation until it is sent to a
RAM destination. This is a dummy address and
cannot be read by the micro. The transfer is
automatic during blitter operation.

040 W A Blitter control register 0
042 W A Blitter control register 1

These two control registers are used together to
control blitter operations. There are two basic
modes, area and line, which are selected by bit
0 of BLTCON1, as shown below.

AREA MODE ("normal")

15 ASH3 BSH3
14 ASH2 BSH2

13 ASHL BSH1

12 ASA0 BSHO

11 USEA X

10 USEB X

09 USEC X

08 USED X

07 LE? X

06 LE6 X

05 LE5 X

04 LF4 EFE

03 LF3 IFE

02 LF2 FCI

01 LF1 DESC

00 LFO LINE (=0)

ASH3-0 Shift value of A source

BSH3-0 Shift value of B source

USEA Mode control bit to use source A
USEB Mode control bit to use source B

USEC Mode control bit to use source C

USED Mode control bit to use destination D
LF7-0 Logic function minterm select lines
EFE Exclusive fill enable

IFE Inclusive fill enable

FCI Fill carry input

DESC Descending (decreasing address) control bit
LINE Line mode control bit (set to 0)

LINE DRAW LINE MODE (line draw)

LINE DRAW ~ ==------ --

LINE DRAW BIT# BLTCONO BLTCON1
LINE DRAW =~ === =--ccce cceaeoo
LINE DRAW 15 START3 TEXTURE3
LINE DRAW 14 START2 TEXTURE2
LINE DRAW 13 START1 TEXTURE1
LINE DRAW 12 STARTO TEXTUREO
LINE DRAW 11 1 0

LINE DRAW 10 0 0

LINE DRAW 09 1 0

LINE DRAW 08 1 0

LINE DRAW 07 LE7 0

LINE DRAW 06 LF6 SIGN
LINE DRAW 05 LFS 0 (Reserved)
LINE DRAW 04 [LF4 SUD
LINE DRAW 03 LF3 SUL
LINE DRAW 02 LF2 AUL
LINE DRAW 01 LF1 SING
LINE DRAW 00 LFO LINE (=1)

LINE DRAW

V-V

LINE DRAW START3-0 Starting point of line BPLxPTH 0E0 W A Bit plane x pointer (high 3 bits)
LINE DRAW (0 thru 15 hex) BPLxPTL 0E2 W A Bit plane x pointer (low 15 bits)
LINE DRAW LE7-0 Logic function minterm This pair of registers contains the 18-bit pointer to
LINE DRAW select lines should be preloaded the address of bit-plane x (x=1,2,3,4,5,6) DMA data.
LINE DRAW with 4A to select the equation This pointer must be reinitialized by the processor
LINE DRAW D=(AC+ABC) . Since A contains a or copper to point to the beginning of bit plane data
LINE DRAW single bit true (8000), most bits every vertical blank time.
LINE DRAW will pass the C field unchanged
LINE DRAW (not A and C), but one bit will BPLXDAT 110 W D Bit plane x data {parallel-to-serial
LINE DRAW invert the C field and combine it convert)
LINE DRAW with texture (A and B and not C). These registers receive the DMA data fetched from
LINE DRAW The A bit is automatically moved RAM by the bit plane address pointers described
LINE DRAW across the word by the hardware. above. They may also be written by either
LINE DRAW microprocessor. They act as a six-word parallel-
LINE DRAW LINE Line mode control bit to-serial buffer for up to six memory bit planes
LINE DRAW (set to 1) (x=1-6) . The parallel-to-serial conversion is
LINE DRAW SIGN - Sign flag triggered whenever bit plane #l1 is written,
LINE DRAW 0 Reserved for new mode indicating the completion of all bit planes for
LINE DRAW SING Single bit per horizontal that word (16 pixels). The MSB is output first,
LINE DRAW line for use with subsequent and is, therefore, always on the left.
LINE DRAW area fill
LINE DRAW SuD Sometimes up or down (=AUD*) BPLIMOD 108 W A Bit plane modulo (odd planes)
LINE DRAW SUL Sometimes up or left BPL2MOD 10A W A Bit Plane modulo (even planes)
LINE DRAW AUL Always up or left These registers contain the modulos for the odd
LINE DRAW The 3 bits above select the octant and even bit planes. A modulo is a number that is
LINE DRAW for line drawing: automatically added to the address at the end of
LINE DRAW oCT SUD SUL AUL each line, so that the address then points to the
LINE DRAW - ——— ee- —ee start of the next line.
LINE DRAW 0 1 1 0 Since they have separate modulos, the odd and even
LINE DRAW 1 0 0 1 bit planes may have sizes that are different from
LINE DRAW 2 0 1 1 each other, as well as different from the display
LINE DRAW 3 1 1 1 window size.
LINE DRAW 4 1 0 1
LINE DRAW 5 0 1 0
LINE DRAW 6 0 0 0 BPLCONO 100 W AD Bit plane control register (misc.
LINE DRAW 7 1 0 0 control bits)
LINE DRAW The "B" source is used for BPLCON1 102 W D Bit plane control register
LINE DRAW texturing the drawn lines. (horizontal scroll control)
BPLCON2 104 W D Bit Plane control register
BLTSIZE 058 W A Blitter start and size (window width, (video priority control)
height) These registers control the operation of the

This register contains the width and height of bit planes and various aspects of the display.
the blitter operation (in line mode, width must BITH# BPLCONO BPLCON1 BPLCON2
= 2, height = line length). Writing to this cm== | mmmemmee ammcmcee eeceeces
register will start the blitter, and should be 15 HIRES X X
done last, after all pointers and control 14 BPU2 X X
registers have been initialized. 13 BPU1 X X
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 12 BPUO X X

h9 h8 h7 h6 h5 h4 h3 h2 hl h0,w5 w4 w3 w2 w1 w0 11 HOMOD X X
h=height=vertical lines (10 bits=1024 lines max) 10 DBLPF X X
w=width =horizontal pixels (6 bits=64 words=1024 pixels max) 09 COLOR X X
LINE DRAW BLTSIZE controls the line length and starts 08 GAUD X X
LINE DRAW the line draw when written to. The h field] 07 X PF2H3 X
LINE DRAW controls the line length (10 bits gives 06 X "~ PF2H2 PF2PRI
LINE DRAW 1lines up to 1024 dots long). The w field 05 X PF2H1 PF2P2
LINE DRAW must be set to 02 for all line drawing. 04 X PF2HO PE2P1

03 LPEN PF1H3 PF2P0

1 4

CLXCON

098

02 LACE PF1H2 PF1P2
01 ERSY PF1H1 PE1P1
00 X PE1HO PE1P0

HIRES=High-resolution (640) mode
BPU =Bit plane use code 000-110 (NONE through 6 inclusive)
HOMOD=Hold-and-modify mode
DBLPF=Double playfield (PFl=odd PF2=even bit planes)
COLOR=Composite video COLOR enable
GAUD=Genlock audio enable (muxed on BKGND pin
during vertical blanking
LPEN =Light pen enable (reset on power up)
LACE =Interlace enable (reset on power up)
ERSY =External resync (HSYNC, VSYNC pads become
inputs) (reset on power up)
PF2PRI=Playfield 2 (even planes) has priority over
(appears in front of) playfield 1
(odd planes). .
PE2P=Playfield 2 priority code (with respect
to sprites)
PF1P=Playfield 1 priority code (with respect
to sprites)
PE2H=Playfield 2 horizontal scroll code
PF1H-Playfield 1 horizontal scroll code

w D Collision control

This register controls which bit-planes are
included (enabled) in collision detection and
their required state if included. It also controls
the individual inclusion of odd-numbered sprites
in the collision detection by logically OR-ing
them with their corresponding even-numbered sprite.
BIT$ FUNCTION DESCRIPTION

15 ENSP7 Enable sprite 7 (ORed with sprite 6)

14 ENSP5 Enable sprite 5 (ORed with sprite 4)

13 ENSP3 Enable sprite 3 (ORed with sprite 2)

12 ENSP1 Enable sprite 1 (ORed with sprite 0)

11 ENBP6 Enable bit plane 6 (match required
for collision) .

10 ENEP5 Enable bit plane 5 (match required
for collision)

09 ENBP4 Enable bit plane 4 (match required
for collision)

08 ENBP3 Enable bit plane 3 (match required
for collision)

07 ENBP2 Enable bit plane 2 (match required
for collision)

06 ENEP1 Enable bit plane 1 (match required
for collision)

0S MVBP6 Match value for bit plane 6 collision

04 MVEPS Match value for bit plane 5 collision

03 MVEP4 Match value for bit plane 4 collision

02 MVBP3 Match value for bit plane 3 collision
01 MVEP2 Match value for bit plane 2 collision
00 MVBP1 Match value for bit plane 1 collision

CLXDAT

COLORxx

COPCON

00E

180

02E

NOTE: Disabled bit planes cannot prevent
collisions. Therefore if all bit planes are
disabled, collisions will be continuous,
regardless of the match values.

R D Collision data register (read and clear)
This address reads (and clears) the collision
detection register. The bit assignments are below.
NOTE: Playfield 1 is all odd-numbered enabled
bit planes. Playfield 2 is all even-numbered
enabled bit planes
BIT# COLLISIONS REGISTERED

14 Sprite 4 (or 5) to sprite 6 (or 7)
13 Sprite 2 (or 3) to sprite 6 (or 7)
12 Sprite 2 (or 3) to sprite 4 (or 5)
11 Sprite 0 (or 1) to sprite 6 (or 7)
10 Sprite 0 (or 1) to sprite 4 (or 5)
09 Sprite 0 (or 1) to sprite 2 (or 3)
08 Playfield 2 to sprite 6 (or 7)

07 Playfield 2 to sprite 4 (or 5)

06 Playfield 2 to sprite 2 (or 3)

05 Playfield 2 to sprite 0 (or 1)

04 Playfield 1 to sprite 6 (or 7)

03 Playfield 1 to sprite 4 (or 5)

02 Playfield 1 to sprite 2 (or 3)

01 Playfield 1 to sprite 0 (or 1

00 Playfield 1 to playfield 2

W D Color table xx

There are 32 of these registers (xx=00-31) and they
are sometimes collectively called the "color
palette." They contain 12-bit codes representing
red, green, and blue colors for RGB systems.

One of these registers at a time is selected

(by the BPLxDAT serialized video code)

for presentation at the RGB video output pins.

The table below shows the color register bit usage.
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01, 00

RGB X X X X R3R2R1R0G3G2G1Go B3 B2 Bl B0
B=blue, G=green, R=red,

W A Copper control register

This is a 1-bit register that when set true, allows
the Copper to access the blitter hardware. This
bit 1is cleared by power-on reset, so that the
Copper cannot access the blitter hardware.

BIT# NAME FUNCTION

01 CDANG Copper danger mode. Allows Copper
access to blitter if true.

COPIMP1
COPIMP2

COP1LCH
COP1LCL
COP2LCH
COP2LCL

COPINS

088
08A

080
082
084
086

08C

S A Copper restart at first location

S A Copper restart at second location
These addresses are strobe addresses. When written
to, they cause the Copper to jump indirect using
the address contained in the first or second
location registers described below. The Copper
itself can write to these addresses, causing its
own jump indirect.

W A Copper first location register
(high 3 bits)

W A Copper first location register
(low 15 bits)

W A Copper second location register
(high 3 bits)

W A Copper second location register

(low 15 bits)
These registers contain the jump addresses
described above.

W A Copper instruction fetch identify
This is a dummy address that is generated by the
Copper whenever it is loading instructions into
its own instruction register. This actually occurs
every Copper cycle except for the second (IR2)
cycle of the MOVE instruction. The three types
of instructions are shown below.

MOVE Move immediate to destination.

WAIT Wait until beam counter is equal to, or
greater than. (keeps Copper off of bus
until beam position has been reached).

SKIP Skip if beam counter is equal to or
greater than (skips following MOVE
instruction unless beam position has

been reached) .

MOVE WAIT UNTIL SKIP IF
BIT# IRl 1IR2 IR1 IR2 IRl IR2
15 X RD1S VP7 BED # VP7 BED #
14 X RD14 VP6 VE6 VP6 VE6
13 X RD13 VPS5 VE5 VP5 VES
12 X RD12 VP4 VE4 VP4 VE4
11 X RD11 VP3 VE3 VP3 VE3
10 X RD10 VP2 VE2 VP2 VE2
09 X RD09 VP1 VE1 VP1 VE1
08 DAS RD08 VPO VEO VPO VEO
07 DA7 = RD07 HP8 HE8 HP8 HES
06 DA6 RD06 HP?7 HE7 HP7 HE7
05 DAS RDO0S HP6 HE6 HP6 HE6
04 DA4 RD04 HP5 HES HPS HES
03 DA3 RD03 HP4 HE4 HP4 HE4
02 DA2 RD02 HP3 HE3 HP3 HE3
01 DAl RDO1 HP2 HEZ HP2 HE2
00 0 RDOO 1 0 1 1

DIWSTRT
DIWSTOP

08E- W A
090 W A

IR1=First instruction register

IR2=Second instruction register

DA =Destination address for MOVE instruction.
Fetched during IRl time, used during IR2 time
on RGA bus.

RD =RAM data moved by MOVE instruction at IR2 time
directly from RAM to the address given by the
DA field.

VP =Vertical beam position comparison bit.

HP =Horizontal beam position comparison bit.

VE =Enable comparison (mask bit).

HKE =Enable comparison (mask bit).

* NOTE BED=Blitter finished disable. When this bit

is true, the Blitter Finished flag will
have no effect on the Copper. When this
bit is zero, the Blitter Finished flag
must be true (in addition to the rest of
the bit comparisons) before the Copper
can exit from its wait state or skip
over an instruction. Note that the V7
comparison cannot be masked.

The Copper is basically a two-cycle machine that
requests the bus only during odd memory cycles

(4 memory cycles per instruction). This prevents
collisions with display, audio, disk, refresh, and
sprites, all of which use only even cycles. It
therefore needs (and has) priority over only the
blitter and microprocessor.

There are only three types of instructions:
MOVE immediate, WAIT until, and SKIP if. All
instructions (except for WAIT) require two bus
cycles (and two instruction words). Since only
the odd bus cycles are requested, four memory
cycle times are required per instruction
(memory cycles are 280 ns.)

There are two indirect jump registers, COP1LC and
COP2LC. These are 18-bit pointer registers whose
contents are used to modify the program counter for
initialization or jumps. They are transferred to
the program counter whenever strobe addresses
COPJMP1 or COPJMP2 are written. In addition,
COP1IC is automatically used at the beginning of
each vertical blank time.

It is important that one of the jump registers be
initialized and its jump strobe address hit after
power-up but before Copper DMA is initialized.

This insures a determined startup address and state.

Display window start (upper left
vertical-horizontal position)
Display window stop (lower right
vertical-horizontal position)

lL-V

DDFSTRT
DDESTOP

DMACON
DMACONR

092
094

096
002

These registers control display window size and
position by locating the upper left and lower right
corners.

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00
USE V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1 HO
DIWSTRT is vertically restricted to the upper 2/3
of the display (V8=0) and horizontally restricted to
the left 3/4 of the display (H8=0).

DIWSTOP is vertically restricted to the lower 1/2
of the display (V8=/=V7) and horizontally restricted
to the right 1/4 of the display (H8=1).

W A Display data fetch start (horiz. position)
W A Display data fetch stop (horiz. position)
These registers control the horizontal timing of the
beginning and end of the bit plane DMA display data
fetch. The vertical bit plane DMA timing is identical
to the display windows described above.

The bit plane modulos are dependent on the bit plane
horizontal size and on this data-fetch window size.

Register bit assignment

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00
USE X X X X X X X XHBH7H6HSH4H3 X X
(X bits should always be driven with 0 to maintain

upward compatibility)

The tables below show the start and stop timing for
different register contents.

DDESTRT (left edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4
Extrawide (max) * 0 0 1 0 1
Wide 00110
Normal 0 0 11 1
Narrow 0100 0

DDESTOP (right edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4
Narrow 110 01
Normal 11010
Wide (max) 11011

W ADP DMA control write (clear or set)

R A P DMA control (and blitter status) read
This register controls all of the DMA channels and
contains blitter DMA status bits.

DSKPTH
DSKPTL

DSKLEN

DSKDAT
DSKDATR

020
022

024

026
008

BIT# FEUNCTION DESCRIPTION

15 SET/CLR Set/clear control bit. Determines
if bits written with a 1 get set or
cleared. Bits written with a zero
are unchanged.

14 BBUSY Blitter busy status bit (read only)

13 BZERO Blitter logic zero status bit
(read only).

12 X

11 X

10 BLTPRI Blitter DMA priority

over CPU micro) (also called
" blitter nasty") (disables /BLS
pin, preventing micro from
stealing any bus cycles while
blitter DMA is running).

09 DMAEN Enable all DMA below

08 BPLEN Bit plane DMA enable

07 COPEN Copper DMA enable

06 BLTEN Blitter DMA enable

05 SPREN Sprite DMA enable

04 DSKEN Disk DMA enable

03 AUD3EN Audio channel 3 DMA enable

02 AUD2EN Audio channel 2 DMA enable

01 AUD1EN Audio channel 1 DMA enable

00 AUDOEN Audio channel 0 DMA enable

W A Disk pointer (high 3 bits)

W A Disk pointer (low 15 bits)

This pair of registers contains the 18-bit
address of disk DMA data. These address registers
must be initialized by the processor or Copper
before disk DMA is enabled.

W P Disk length

This register contains the length (number of words)
of disk DMA data. It also contains two control
bits, a DMA enable bit, and a DMA direction

(read/write) bit.
BIT# FEUNCTION DESCRIPTION

15 DMAEN Disk DMA enable

14 WRITE Disk write (RAM to disk) if 1
13-0 LENGTH Length (# of words) of DMA data.
W P Disk DMA data write

ER P Disk DMA data read {(early read durmmy

address)
This register is the disk DMA data buffer. It
contains two bytes of data that are either sent
{written) to or received (read) from the disk.
The write mode is enabled by bit 14 of the LENGTH
register. The DMA controller automatically
transfers data to or from this register and RAM,
and when the DMA data is finished (length=0) it
causes a disk block interrupt. See interrupts below.

DSKBYTR

DSKSYNC

INTREQ
INTREQR

INTENA
INTENAR

01A

07E

09C
01E

09A
01C

R P Disk data byte and status read

This register is the disk-microprocessor data
buffer. Data from the disk (in read mode) is
loaded into this register one byte at a time, and
bit 15 (DSKBYT) is set true.

BITH#
15 DSKBYT Disk byte ready (reset on read)
14 BMAON Mirror of bit 15 (DMAEN) in DSKLEN,

ANDed with Bit09 (DMAEN) in DMACON
13 DISKWRITE Mirror of bit 14 (WRITE) in DSKLEN
12 WORDEQUAL This bit true only while the

DSKSYNC register equals the data

from disk. :
11-08 X Not used
07-00 DATA Disk byte data
w P Disk sync register, holds the match
code for disk read synchronization.
Sea ADKCON bit 10.
w P Interrupt request bits (clear or set)
R P Interrupt request bits (read)

This register contains interrupt request bits (or
flags) . These bits may be polled by the processor;
if enabled by the bits listed in the next register,
they may cause processor interrupts. Both a set and
clear operation are required to load arbitrary data
into this register. These status bits are not
automatically reset when the interrupt is serviced,
and must be reset vwhen desired by writing to this
address. The bit assignments are identical to the
enable register below.

W P Interrupt enable bits (clear or set bits)
R P Interrupt enable bits (read)

This register contains interrupt enable bits. The bit
assignment for both the request and enable registers

is given below.

BIT# FUNCT LEVEL DESCRIPTION

comme emmmee ceeee weaae

15 SET/CLR Set/clear control bit. Determines if
bits written with a 1 get set or
cleared. Bits written with a zero
are always unchanged.

14 INTEN Master interrupt (enable only,

no request)

13 EXTER- 6 External interrupt

12 DSKSYN S5 Disk sync register (DSKSYNC)

matches disk data

11 RBF § Serial port receive buffer full

10 AUD3 4 Audio channel 3 block finished

09 AUD2 4 Audio channel 2 block finished

08 AUD1 4 Audio channel 1 block finished

07 AUDO 4 Audio channel 0 block finished

JOYODAT
JOY1DAT

00A
0oC

06 BLIT 3 Blitter finished

05 VERTB 3 Start of vertical blank

04 COPER 3 Copper

03 PORTS 2 1I/0 ports and timers

02 SOET 1 Reserved for software-initiated

interrupt

01 DSKBLK 1 - Disk block finished

00 TBE 1 Serial port transmit buffer empty

R D Joystick-mouse 0 data (left vertical,
horizontal)

R D Joystick-mouse 1 data (right vertical,
horizontal)

These addresses each read a pair of 8-bit mouse
counters. 0=left controller pair, l=right
controller pair (four counters total). The bit
usage for both left and right addresses is shown
below. Each counter 1s clocked by signals from
two controller pins. Bits 1 and 0 of each counter
may be read to determine the state of these two
clock pins. This allows these pins to double as
Joystick switch inputs.

Mouse counter usage:

(pins 1,3=Yclock, pins 2,4=Xclock)

BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02 0
ODAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO X7 X6 X5 X4 X3 X2 X1 X0
1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO X7 X6 X5 X4 X3 X2 X1

The following table shows the mouse/joystick
connector pin usage. The pins (and their functions)
are sampled (multiplexed) into the DENISE chip
during the clock times shown in the table.

This table is for reference only and should

not be needed by the programmer. (Note that the
joystick functions are all "active low" at the
connector pins.)

Sampled by DENISE

Conn Joystick Mouse
Pin Function Function Pin Name Clock

L1 FORW* Y 38 MOV at CCK
L3 LEFT* Y0 38 MOV at CCK*
L2 BACK# X 9 MOH at CCK
4 RIGH* XQ 9 MOH at CCK*
Rl EORW# Y 39 M1V at CCK
R3 LEET* YQ 39 M1V at CCK*
R2 BACK#* X 8 MiH at CCK
R4 RIGH* XQ 8 MIH at CCK*

After being sampled, these connector pin signals
are used in quadrature to clock the mouse counters.
The LEFT and RIGHT joystick functions (active high)
are directly avalilable on the Y1 and X1 bits of
each counter. In order to recreate the FORWARD
and BACK joystick functions, however, it is

6-V

JOYTEST

POTODAT
POT1DAT

036

012
014

034
016

necessary to logically combine (exclusive OR)
the lower two bits of each counter.
This is illustrated in the following table.

To detect Read these

counter bits
Forward Y1 xor YO (BIT#09 xor BIT#08)
Left Yl
Back X1 xor X0 (BIT#01 xor BIT$#00)
Right X1
LJ D Write to all four joystick-mouse counters

at once.
Mouse counter write test data:
BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00
ODAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx
IDAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx

R P Pot counter data left pair (vert, horiz)

R P Pot counter data right pair (vert, horiz)
These addresses each read a pair of 8-bit pot counters.
(Four counters total.) The bit assignment for both
addresses is shown below. The counters are stopped by
signals from two controller connectors (left-right)
with two pins each.

BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

RIGHT Y7 Y6 ¥5 ¥4 ¥3 Y2 Y1 Y0 X7 X6 XS5 X4 X3 X2 X1 X0
LEFT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO X7 X6 X5 X4 X3 X2 X1 X0

CONNECTORS PAULA
Loc. Dir. Sym Pin Pin$ Pin Name
RIGHT Y RY 9 36 (POT1Y)
RIGHT X Rt 5 35 (POT1X)
LEFT Y LY 9 33 (POTOY)
LEFT X ILX § 32 (POTOX)
W P Pot port data write and start.
R P Pot port data read (formerly called POTINP).

This register controls a 4-bit bi-directional I/0 port
that shares the same four pins as the four pot counters
above.

BIT# FEUNCT DESCRIPTION

15 OUTRY Output enable for Paula pin 36
14 DATRY I/O data Paula pin 36
13 OUTRX Output enable for Paula pin 35
12 DATRX I/0 data Paula pin 35
1 OUTLY Output enable for Paula pin 33
10 DATLY 1I/O data Paula pin 33
09 OUTLX Output enable for Paula pin 32

SERDAT

SERDATR

028

030

018

08 DATLX 1I/0 data Paula pin 32

07-01 o0 Reserved for chip ID code (presently 0)

00 START Start pots (dump capacitors, start
counters)

W A Refresh pointer

This register is used as a dynamic RAM refresh
address generator. It is writeable for test
purposes only, and should never be written by
the microprocessor.

LJ P Serlal port data and stop bits write
(transmit data buffer)

This address writes data to a transmit data buffer.

Data from this buffer is moved into a serial shift

register for output transmission whenever it is

empty. This sets the interrupt request TBE

(transmit buffer empty). A stop bit must be

provided as part of the data word. The length of

gxe data word is set by the position of the stop

t.

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

UE 0 0 0 0 0 0 S D8D7D6D5D4D3D2D1 D0

Note: S = stop bit =1, D = data bits.

R P Serial port data and status read
(receive data buffer)

This address reads data from a receive data buffer.

Data in this buffer is loaded from a receiving

shift register whenever it is full. Several

interrupt request bits are also read at this

address, along with the data, as shown below.

BIT#

15 OVRUN Serial port receiver overrun.
Reset by resetting bit 11 of
INTREQ.

14 RBF Serial port receive buffer full
(mirror).

13 TIBE Serial port transmit buffer

) empty (mirror).

12 TSRE Serial port transmit shift
register empty.
Reset by loading into buffer.

11 RO RXD pin receives UART serial
data for direct bit test by
the microprocessor.

10 0 Not used

09 STP Stop bit

08 STP-DB8 Stop bit if LONG, data bit if
not.

07 DB7 Data bit

06 DB6 Data bit

05 DBS5 Data bit

04 DB4 Data bit

03 DB3 Data bit

02 DB2 Data bit

01 DB1 Data bit

00 DBO Data bit

or-Vv

SERPER

SPRxPTH
SPRxPTIL

SPRxCTIL

SPRxDATA
SPRxDATB

032

120
122

140
142

144
146

W P Serial port period and control

This register contains the control bit LONG referred to
above, and a 15-bit number defining the serial port
baud rate. If this number is N, then the baud rate is

1 bit every (N+1)*.2794 microseconds.

BITH#

15 LONG
14-00 RATE

Defines serial reoeive as 9-bit word.
Defines baud rate=1/((N+1) *.2794 microsec.)

W A Sprite x pointer (high 3 bits)

W A Sprite x pointer (low 15 bits)

This pair of registers contains the 18-bit address

of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address
registers must be initialized by the processor or Copper
every vertical blank time.

W AD Sprite x vert-horiz start position data

W AD Sprite x vert stop position and control data

These two registers work together as position, size and

feature sprite-control registers. They are usually loaded

by the sprite DMA channel during horizontal blank;

however, they may be loaded by either processor at any time.

SPRxPOS register:

BIT§ SYM FUNCTION

15-08 SV7-SV0 Start vertical value. High bit(Svs) is
in SPRxCIL register below.

07-00 SH8-SH1 Start horizontal value. Low bit(SHO) is
in SPRxCTL register below.

SPRxCTIL register (writing this address disables sprite
horizontal comparator circuit):

BIT# SYM FUNCTION

15-08 EV7-EV0 End (stop) vertical value low 8 bits
07 ATT Sprite attach control bit (odd sprites)
06-04 X Not used

02 sva Start vertical value high bit

01 Evs End (stop) vertical value high bit

00 SHO Start horizontal value low bit

W D Sprite x image data register A

W D Sprite x image data register B

These registers buffer the sprite image data. They are
usually loaded by the sprite DMA channel but may be
loaded by either processor at any time. When a
horizontal comparison occurs, the buffers are dumped
into shift registers and serially outputted to the
display, MSB first on the left.

NOTE: Writing to the A buffer enables (arms) the sprite.
Writing to the SPRxCTL register disables the sprite.

If enabled, data in the A and B buffers will be outputted
whenever the beam counter equals the sprite horizontal
position value in the SPRxPOS register.

STREQU
STRVBL

STRHOR
STRLONG

038
03A

03C
03E

004
02A

006
02C

Strobe for horizontal sync with VB
and EQU
Strobe forr horizontal sync with VB
(vertical blank)
P Strobe for horizontal sync
Strobe for identification of long
horizontal line
One of the first three strobe addresses above is
placed on the destination address bus during the
first refresh time slot. The fourth strobe shown
above is used during the second refresh time slot of
every other line to identify lines with long counts
(228) . There are four refresh time slots, and any
not used for strobes will leave a null (EF) address
on the destination address bus.

wnn n n
oo U ©

R A Read vertical most significant bit
(and frame flop|
W A Write vertical most significant bit

(and frame flop)
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00
8

USE LOF-- == == == == == == o o2 "'l 0

LOF=Long frame (auto toggle control bit in BPLCONO)

R A

W A Write vertical and horizontal position
of beam or lightpen

BITH# 15,14,13,12,11,10,09,08,07, 06, 05,04, 03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 V0,H8 H7 H6 HS H4 H3 H2 H1

RESOLUTION = 1/160 of screen width (280 ns)

Read vertical and horizontal position of
beam or lightpen

Appendix B

Register Summary — Address Order

This appendix contains information about the register set in address order.
The following codes and abbreviations are used in this appendix:
& Register used by DMA channel only.

% Register used by DMA channel usually, processors sometimes.

+ Address register pair. Low word uses DB1-DB15; high word uses DB0-DB2.

* Address not writable by the Copper.

~

Address not writable by the Copper unless COPCON is set true.

ADP
A=Agnus chip, D=Denise chip, P=Paula chip.

W,R
W=write; R=read,

ER Early read. This is a DMA data transfer to RAM, from either the disk or the
blitter. RAM timing requires data to be on the bus earlier than microprocessor
read cycles. These transfers are therefore initiated by Agnus timing, instead of a
read address on the destination address bus.

S Strobe (write address with no register bits).

PTL,PTH
18-bit pointer that addresses DMA data. Must be reloaded by - a processor
before use (vertical blank for bit-plane and sprite pointers, and prior to starting
the blitter for blitter pointers).

LCL,LCH
18-bit location (starting address) of DMA data. Used to automatically restart
pointers, such as the Copper program counter (during vertical blank) and the
audio sample counter (whenever the audio length count is finished).

MOD
15-bit modulo. A number that is automatically added to the memory address at
the end of each line to generate the address for the beginning of the next line.
This allows the blitter (or the display window) to operate on (or display) a win-
dow of data that is smaller than the actual picture in memory (memory map).
Uses 15 bits, plus sign extend.

€-4d

NAME ADD R/W CHIP FUNCTION
BLTDDAT & *000 ER A Blitter destination early read (dummy address)
DMACONR *002 R A P DMA control (and blitter status) read
VPOSR *004 R A Read vert most signif. bit (and frame flop)
VHPOSR *006 R A Read vert and horiz. position of beam
DSKDATR & *008 ER P Disk data early read (dummy address)
JOYODAT *00A R D Joystick-mouse 0 data (vert, horiz)
JOY1DAT *00C R D Joystick-mouse 1 data (vert, horiz)
CLXDAT *00E R D Collision data register (read and clear)
ADKCONR %010 R P Audio, disk control register read
POTODAT %012 R P Pot counter pair 0 data (vert, horiz)
POT1DAT *014 R P Pot counter pair 1 data (vert, horiz
POTGOR %016 R P Pot port data read (formerly POTINP;
SERDATR *018 R P Serial port data and status read
DSKBYTR *01A R P Disk data byte and status read
INTENAR *01C' R P Interrupt enable bits read
INTREQR *01E R P Interrupt request bits read
DSKPTH + %020 W A Disk pointer (high 3 bits)
DSKPTL + %022 W A Disk pointer (low 15 bits)
DSKLEN *024 W P Disk length
DSKDAT & %026 W P Disk DMA data write
REFPTR & *028 W A Refresh pointer
VPOSW *02A W A Write vert most signif. bit (and frame flop)
VHPOSW *02C W A Write vert and horiz position of beam
COPCON *02E W A Coprocessor control register (CDANG)
SERDAT %030 W P Serial port data and stop bits write
SERPER %032 W P Serial port period and control
POTGO *034 W - P Pot port data write and start
JOYTEST *036 W D Write to all four joystick-mouse counters at once
STREQU & %038 S D Strobe for horiz sync with VB and EQU
STRVBL & *03A S D Strobe for horiz sync with VB (vert. blank)
STRHOR & *03C S DP Strobe for horiz sync
STRLONG & *03E S D Strobe for identification of long horiz. line.
BLTCONO “040 W A Blitter control register 0
BLTCON1 “042 W A Blitter control register 1
BLTAFWM “044 W A Blitter first word mask for source A
BLTALWM “046 W A Blitter last word mask for source A
BLTCPTH + ~048 W A Blitter pointer to source C (high 3 bits)
BLTCPIL + "04A W A Blitter pointer to source C (low 15 bits)
BLTEPTH + ~04C W A Blitter pointer to source B (high 3 bits)
BLTBPTL + “04E W A Blitter pointer to source B (low 15 bits)
BLTAPTH + 050 W A Blitter pointer to source A (high 3 bits)
BLTAPTL + "052 W A Blitter pointer to source A (low 15 bits)
BLTDPTH + “054 W A Blitter pointer to destination D (high 3 bits
BLTDPTL + "056 W A Blitter pointer to destination D (low 15 bits
BLTSIZE “058 W A Blitter start and size (window width, height)
~05A
~05C
~05E
BLTCMOD “060 W A Blitter modulo for source C
BLTBMOD “062 W A Blitter modulo for source B
BLTAMOD ~064 W A Blitter modulo for source A

BLTDMOD

BLTCDAT
BLTBDAT
BLTADAT

DSKSYNC
COP1ICH
COP1LCL
COP2LCH
COP2LCL

COPJMP1
COPIMP2
COPINS

DIWSTRT

DIWSTOP
DDESTIRT
DDESTOP

DMACON
CLXCON
INTENA

INTREQ

ADKCON

AUDOLCH
AUDOLCL
AUDOLEN
AUDOPER
AUDOVOL
AUDODAT

AUD1LCH
AUD1LCL
AUD1LEN
AUD1PER
AUD1VOL
AUD1DAT

~066
~068
~06A
~06C
~06E
% ~070
o ~072
% ~074
~076
~078
~07A
~07C

ELXE

TELZILEXE ¥ X X £ ¥ LTV £ £ ¥ T W

EXNLEIEX

A A A 222 0 e B >y

> >

»>

v w v

LR]

wwoun

Blitter modulo for destination D

Blitter source C data register
Blitter source B data register
Blitter source A data register

Disk sync pattern register for disk
read

Coprocessor first location register
(high 3 bits)

Coprocessor first location register
{low 15 bits)
rocessor second location register
(high 3 bits)

Coprocessor second location register
(low 15 bits)

Coprocessor restart at first location

Coprocessor restart at second location

Coprocessor instruction fetch identify

Display window start (upper left
vert-horiz position)

Display window stop (lower right
vert.-horiz. position)

Display bit plane data fetch start
(horiz. position)

Display bit plane data fetch stop
(horiz. position)

DMA control write (clear or set)

Collision control

Interrupt enable bits (clear or
set bits)

Interrupt request bits (clear or
set bits)

Audio, disk, UART control

Audio channel 9 location (high 3 bits)

Audio channel 0 location (low 15 bits)

Audio channel 0 length

Audio channel 0 period

Audio channel 0 volume

Audio channel 0 data

Audio channel 1 location (high 3 bits)

Audio channel 1 location (low 15 bits)

Audio channel 1 length

Audio channel 1 period

Audio channel 1 volume

Audio channel 1 data

AUD2LCH
AUD2LCL
AUD2LEN
AUD2PER
AUD2VOL
AUD2DAT

AUD3LCH
AUD3LCL
AUD3LEN
AUD3PER
AUD3VOL
AUD3DAT

BPL1PTH
BPL1PTL
BPL2PTH
BPL2PTL
BPL3PTH
BPL3PTL
BPLAPTH
BPL4PTL
BPLSPTH
BPLSPTL
BPL6PTH
BPL6PTL

BPLCONO
BPLCON1
BPLCON2

BPL1MOD
BPL2MOD

BPL1DAT
BPL2DAT
BPL3DAT
BPL4DAT
BPLSDAT
BPL6DAT

SPROPTH
SPROPTL
SPR1PTH
SPR1PTL
SPR2PTH
SPR2PTL
SPR3PTH
SPR3PTL

+ 4+

]

L 2K K 2K R B R R B 2R 3K I J

PR ORD

++++ 4+t

0Co
0c2

0C6
ocs

ocC
0CE
0D0
0D2
0D4
0D6
0D8

oDC
ODE
0E0
0E2
0E4
0E6
0E8
OEA
0EC
OEE
OF0
0F2
0F4
0F6
OE8
OFA
OFC
OFE
100
102
104
106
108
10A
10C
10E
110
112
114
116
118
11A
11C

120
122
124
126
128
12A
12C
12E

EEZILEIXL

£E XX EXEINIZEIEIILEE ELEZZZLE

EEEIEE

EXLELIEETE

>

>

b d PEPIPIPB PP

PP PP

oo

Vovuooo

oo

oy

Audio channel 2 location
Audio channel 2 location

Aundio channel 2 length
Audio channel 2 period
Audio channel 2 volume
Audio channel 2 data

Aundio channel 3 location
Audio channel 3 location

Audio channel 3 length
Audio channel 3 period
Audio channel 3 volume
Audio channel 3 data

Bit plane 1 pointer (high 3 bits)
Bit plane 1 pointer (low 15 bits)

Bit plane 2 pointer (h

ich 3 bits)

Bit plane 2 pointer (low 15 bits)

Bit plane 3 pointer (high

3 bits)

Bit plane 3 pointer (low 15 bits)
Bit plane 4 pointer (high 3 bits)

Bit plane 4 pointer
Bit plane 5 pointer (high
Bit plane 5 pointer
Bit plane 6 pointer
Bit plane 6 pointer

Bit plane control register (misc. control bits)
Bit plane control reg. (scroll value PF1l, PF2)

low 15 bits)
3 bits)
low 15 bits)
(hich 3 bits)
low 15 bits)

gh 3 bits)
(low 15 bits)

(high 3 bits)
(low 15 bits)

Bit plane control reg. (priority control)

Bit plane modulo
Bit Plane modulo

Bit plane 1 data (parallel-to-serial
(parallel-to-serial
(parallel-to-serial
[parallel-to-serial
(parallel-to-serial
(parallel-to-serial

Bit plane 2 data
Bit plane 3 data
Bit plane 4 data
Bit plane 5 data
Bit plane 6 data

Sprite 0 pointer
Sprite 0 pointer
Sprite 1 pointer
Sprite 1 pointer
Sprite 2 pointer
Sprite 2 pointer

Sprite 3 pointer (high

Sprite 3 pointer

(odd planes)
(even planes)

(hich 3 bits)
(low 15 bits)

(high 3 bits)
(low 15 bits)
(high 3 bits)
(low 15 bits)
3 bits)
(low 15 bits)

convert)
convert)
convert)
convert)
convert)
convert)

SPR3DATA

QI 3R JRIRIE IR 2R Q. JRICIR AR JLIRIL 32 2RI PY JRIQNT 2L WRIRIR IR R4+ F b

150
152
154
156
1sSA
15C
15E
160
162

164

166 .

168
16A

16C -

16E
170

172
174
176
178
17A

17C
178

LTE £ £IEf ¥ EXIE I E£XILf £ IELX £ XXX £ XX £ ILIE ¥ IIDIEIIEZL

» > E » > > > » > » > > PPIIPPIIIP
U U QYUY U UUU U QU0 U DUV U DUU U UDU U UUU U ©

»

Sprite 4 pointer
Sprite 4 pointer
Sprite 5 pointer
Sprite 5 pointer

Sprite 6 pointer (high

Sprite 6 pointer

Sprite 7 pointer (hi

Sprite 7 pointer

Sprite 0 vert-horiz start position

data

(high 3 bits)
low 15 bits)
(high 3 bits)
(low 15 bits)
3 bits)
{low 15 bits)
gh 3 bits)
(low 15 bits)

Sprite 0 vert stop position and
control data

Sprite 0 image data register A

Sprite 0 image data register B

Sprite 1 vert-horiz start position
data

Sprite 1 vert stop position and
control data

Sprite 1 image data register A

Sprite 1 image data register B

Sprite 2 vert-horiz start position
data

Sprite 2 vert stop position and
control data

Sprite 2 image data register A

Sprite 2 image data register B

Sprite 3 vert-horiz start position
data

Sprite 3 vert stop position and
control data

Sprite 3 image data register A

Sprite 3 image data register B

Sprite 4 vert-horiz start position
data

Sprite 4 vert stop position and
control data

Sprite 4 image data register A

Sprite 4 image data register B

Sprite 5 vert-horiz start position
data

Sprite 5 vert stop position and
control data

Sprite 5 image data register A

Sprite 5 image data register B

Sprite 6 vert-horiz start position
data

Sprite 6 vert stop position and
control data

Sprite 6 image data register A

Sprite 6 image data register B

Sprite 7 vert-horiz start position
data

Sprite 7 vert stop position and
control data

Sprite 7 image data register A

Sprite 7 image data register B

COLOR00O
COLOROL
COLOR02
COLORO3
COLOR04
COLOROS
COLOR06
COLOR07
COLOR08
COLOR09
COLOR10
COLOR11
COLOR12
COLOR13
COLOR14
COLOR15
COLOR16
COLOR17
COLOR18
COLOR19
COLOR20
COLOR21
COLOR22
COLOR23
COLOR24
COLOR25
COLOR26
COLOR27
COLOR28
COLOR29
COLOR30
COLOR31
RESERVED
RESERVED

180
182
184
186
188
18A
18C
18E
190
192
194
196
198

19E

1B0
1B2
184
1B6
1B8
1BA
1BC
1BE
1110X
1111X

LIS ENEEEEEEEELEEERIIIENEZ

NO-OP (NULL) 1EE

YoUUUUDUUDUDDUDDUDUUDUDUUDO0DU0DUOU0D

Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table
Color table

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Appendix C

Custom Chip Pin Allocation List

NOTE: * Means an active low signal.

¢6-0

AGNUS PIN ASSIGNMENT

EUNCTION DEFINITION
DATA BUS 8 1/0
DATA BUS 7 1/0
DATA BUS 6 1/0
DATA BUS 5 1/0
DATA BUS 4 1/0
DATA BUS 3 1/0
DATA BUS 2 1/0
DATA BUS 1 1/0
DATA BUS 0 1/0
+5 VOLT I
SYSTEM RESET I
INTERRUPT LEVEL 3 0
DMA REQUEST LINE I
BLITTER SLOWDOWN I
DATA BUS REQUEST 0
AGNUS RAM WRITE 0
REGISTER ADDRESS 8 1/0
REGISTER ADDRESS 7 1/0
REGISTER ADDRESS 6 1/0
REGISTER ADDRESS 5 1/0
REGISTER ADDRESS 4 1/0
REGISTER ADDRESS 3 1/0
REGISTER ADDRESS 2 1/0
REGISTER ADDRESS 1 1/0
COLOR CLOCK 1
COLOR CLOCK DELAY 1
GROUND 1
DYNAMIC RAM ADDRESS 0 0
DYNAMIC RAM ADDRESS 1)
DYNAMIC RAM ADDRESS 2 0
DYNAMIC RAM ADDRESS 3 0
DYNAMIC RAM ADDRESS 4 0
DYNAMIC RAM ADDRESS 5 0
DYNAMIC RAM ADDRESS 6 0
DYNAMIC RAM ADDRESS 7 0
DYNAMIC RAM ADDRESS 8 0
LIGHT PEN INPUT I
VERTICAL SYNC 1/0
COMPOSITE SYNC 0
HORIZONTAL SYNC 1/0
GROUND 1
DATA BUS 15 1/0
DATA BUS 14 1/0
DATA BUS 13 1/0
DATA BUS 12 1/0
DATA BUS 11 1/0
DATA BUS 10 1/0
DATA BUS 9 1/0

DENISE PIN ASSIGNMENT

EUNCTION

DATA BUS 6

DATA BUS 5

DATA BUS 4

DATA BUS 3

DATA BUS 2

DATA BUS 1

DATA BUS 0

MOUSE 1 HORIZONTAL
MOUSE 0 HORIZONTAL
REGISTER ADDRESS 8
REGISTER ADDRESS 7
REGISTER ADDRESS 6
REGISTER ADDRESS 5
REGISTER ADDRESS 4
REGISTER ADDRESS 3
REGISTER ADDRESS 2
REGISTER ADDRESS 1
COLOR BURST

+5 VOLT

VIDEO RED BIT 0
VIDEO RED BIT 1
VIDEO RED BIT 2
VIDEO RED BIT 3
VIDEO BLUE BIT 0
VIDEO BLUE BIT 1
VIDEO BLUE BIT 2
VIDEO BLUE BIT 3
VIDEO GREEN BIT 0
VIDEO GREEN BIT 1
VIDEO GREEN BIT 2
VIDEO GREEN BIT 3
NOT CONNECTED

BACKGROUND INDICATOR

NOT CONNECTED
7.15909 MHZ
COLOR CLOCK
GROUND

MOUSE 0 VERTICAL
MOUSE 1 VERTICAL
DATA BUS 1S5
DATA BUS 14
DATA BUS 13
DATA BUS 12
DATA BUS 11
DATA BUS 10

DATA BUS 9

DATA BUS 8

DATA BUS 7

DEFINITION

EOOOOOOOOOOOOHOHHHHHHHHHH

a

b - 2O
S

PAULA PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION
1 D8 DATA BUS 8 1/0
2 D7 DATA BUS 7 1/0
3 D6 DATA BUS 6 1/0
4 D5 DATA BUS 5 1/0
5 D4 DATA BUS 4 1/0
6 D3 DATA BUS 3 1/0
7 D2 DATA BUS 2 1/0
8 vss GROUND 1
9 D1 DATA BUS 1 1/0

10 DO DATA BUS 0 1/0
11 RES* SYSTEM RESET I
12 DMAL DMA REQUEST LINE o
13 IPLO* INTERRUPT LINE 0 0
14 IPL1* INTERRUPT LINE 1 0
15 IPL2* INTERRUPT LINE 2 0
16 INT2* INTERRUPT LEVEL 2 1
17 INT3* INTERRUPT LEVEL 3 1
18 INTG* INTERRUPT LEVEL 6 1
19 RGAS REGISTER ADDRESS 8 I
20 RGA7 REGISTER ADDRESS 7 I
21 RGAG REGISTER ADDRESS 6 1
22 RGAS REGISTER ADDRESS 5 1
23 RGA4 REGISTER ADDRESS 4 1
24 RGA3 REGISTER ADDRESS 3 1
25 RGA2 REGISTER ADDRESS 2 1
26 RGAL REGISTER ADDRESS 1 1
27 vee +5 VOLT 1
28 CCK COLOR CLOCK 1
29 CCKQ COLOR CLOCK DELAY 1
30 AUDB RIGHT AUDIO)
31 AUDA LEFT AUDIO 0
32 POTOX POT 0X 1/0
33 POTOY POT 0Y 1/0
34 VSSANA ANALOG GROUND 1
35 POT1X POT 1X 1/0
36 POTLY POT 1Y 1/0
37 DKRD* DISK READ DATA I
38 DKWD* DISK WRITE DATA)
39 DKWE DISK WRITE ENABLE 0
40 TXD SERIAL TRANSMIT DATA 0
41 RXD SERIAL RECEIVE DATA I
42 D15 DATA BUS 15 1/0
43 D14 DATA BUS 14 1/0
44 D13 DATA BUS 13 1/0
45 D12 DATA BUS 12 1/0
46 D11 DATA BUS 11 1/0
47 D10 DATA BUS 10 1/0

48 D9 DATA BUS 9 I/0

Appendix D

‘System Memory Map

ADDRESS RANGE

000000-03EFEF
040000-07EEEE
080000-1FFEFF
’ 200000-SFEFEF
A00000-BEEFEF
BE‘D_O_OO-BEDEOO

BFE001-BEEF01

The

NOTES

256k bytes of RAM

256k bytes of display RAM (option card)
Do not use

External expansion space

Do not use

8520-B (access only at EVEN byte addresses)
8520-A (access only at ODD byte addresses)

underlined digit chooses which of the

16 internal registers of the 8520 is to be
accessed.

Register names are given below.

C00000-DEEEEF
DEF000-DEFFEF

E00000-E7EFEF
E80000-EFFEEF
F00000-E7FFEF
EF80000-FFFEEF

Reserved for future use

Special purpose chips, where

the last three digits specify

the chip register WORD address.

The chip addresses are specified

in separate pages immediately
following this overall memory map.
Reserved for future use - do not use
Expansion slot decoding

Reserved - do not use

System ROM

DEVELOPMENT SYSTEM ROMs located at start address FE0000

FINAL SYSTEM ROMs will probably be located at FC0000

The names of the registers within the 8520s are
as follows. The address at which each is to be
accessed 1s given in this list.

Address for:

8520-A 8520-B | NAME | EXPLANATION

(write)/(read mode)

BFE001 BFD000 PRA Peripheral data register A
BFE101 BED100 PRB Peripheral data register B
BFE201 BFD200 DDRB Data direction register A
BFE301 BFD300 DDRA Data direction register B
BFE401 BFD400 TALO TIMER A low register
BFE501 BFD500 TAHI TIMER A high register
BFE601 BFD600 TBLO TIMER B low register
BFE701 BED700 TBHI TIMER B high register

BFE801 BED800 Event LSB

BFE901 BED900 Event 8 - 15

BFEAO1 BEDA0O Event MSB

BFEBO1 BFDB00 No connect

BFECO01 BEDCO0 SDR Serial data register
BFEDO1 BEDDOO ICR Interrupt control register
BFEEO1 BFDE0O0 CRA Control register A

BFEF01 BEDEO0 CRB Control register B

Appendix E

Interfaces

This appendix consists of four distinct parts, related to the way in which the Amiga
talks to the outside world.

The first part specifies the pinouts of the externally accessible connectors and the power
available at each connector. It does not, however, provide timing or loading information.

The second part briefly describes the functions of those pins whose purpose may not be
evident.

The third part contains a list of the connections for certain internal connectors, notably
the disk.

The fourth part specifies how various signals relate to the available ports of the 8520.
This information enables the programmer to relate the port addresses to the outside-
world items (or internal control signals) that are to be affected. The third and fourth
parts are primarily for the use of the systems programmer and should generally not be
utilized by applications programmers. Systems software normally is configured to handle
the setting of particular signals, no matter how the physical connections may change. In
other words, if you have a version of the system software that matches the revision level
of the machine (normally a true condition), when you ask that a particular bit be set,
you don’t care which port that bit is connected to. Thus, applications programmers
should rely on system documentation instead of going directly to the ports. Note also
that in a multitasking operating system, many different tasks may be competing for the
use of the system resources. Applications programmers should follow the established
rules for resource access in order to assure compatibility of their software with the sys-
tem.

See the figures at the end of this appendix for more information about the fire buttons,
light pen, mouse, and the “pot” counters.

E-2

*kdhkkhikdiisd DPART 1 -~ OUTSIDE WORLD CONNECTORS #AAAna#hddaiiihhiids

This is a list of the connections to the outside world on the Amiga.

SERIAL COM ...DB25 FEMALE (J6) (The center coclumn is the AMIGA

PIN RS232 AMIGA HAYES

2
3
4
5
6 DSR DSR DSR
7
8
g

10

11

12 S.8D SI
13 S.CTs

14 -S.TXD -5
157 TXC AUDO
i¢ S.RXD AUDI

~"37 RXC EB

18 INT2#*

20 DIR DR DIR
21 SQD +5

22 RI RI
23 sS +12

24 TXCl Cat

25 RESB*

connection, the others are
specified in this table merely
to show how the AMIGA RS-232-C
connection compares to other
defined interconnect methods.)

DESCRIPTION

RECEIVE DATA
REQUEST TO SEND
CLEAR TO SEND
DATA SET READY
SYSTEM GROUND
CARRIER DETECT

- 5 VOLT POWER

AUDIO OUT OF AMIGA.

AUDIO IN TO AMIGA
BUFFERED PORT CLOCK 716kHz
INTERRUPT LINE TO AMIGA

DATA TERMINAL READY
+ 5 VOLT POWER

+12 volt power
3.58 MHZ CLOCK
BUFFERED SYSTEM RESET

PARALLEL COM ...DB25 MALE (J8)

1 DRDY* 14
2 Do 15
3 D1 16
4 D2 17
5 D3 18
6 D4 19
7 D5 20
8 D6 21
9 D7 22
10 ACK* 23
11 BUSY (data) 24
12 POUT (clk) 25

13 SEL

RESET*

1 +5
2 CLOCK
3 DATA
4 GND

RGB ...DB23 MALE (J3)

1 XCLK# 13
2 XCLKEN* 14
3 RED 15
4 GREEN 16
5 BLUE 17
6 DI 18
7 DB 19
8 DG 20
9 IR 21
10 CSYNC* 22
11 HSYNC* 23
12 VSYNC#

TV VIDEO ...8 PIN DIN

N.C.

GND

AUDIO LEFT
COMP VIDEO
GND

N.C.

+12 VOLT POWER
AUDIO RIGHT

ONOUBId WM

GNDRIN (Return for XCLKEN*)
ZD*
Cl*
GND

- GND

GND

GND

GND

-5 VOLT POWER
+12 VOLT POWER
+5 VOLT POWER

@2)

DISK EXTERNAL ...DB23 FEMALE (J7)

RDY*
DKRD*
CGND
GND
GND
GND
GND
MIRXD*
SEL2B*
10 DRESB*
11 CHNG*
12 +5

VoUW

13 SIDEB*
14 WPRO*
15 TKO*
16 DKWEB*
17 DKWDB*
18 STEPB*
19 DIRB
20 SEL3B*
21 SEL1B*
22 INDEX*
23 +12

v-d

RAMEX ...60 PIN EDGE (.156)

gnd
D15
+5
D12
gnd
D11
+5
D8
and
10 D7
11 +5
12 D4
13 gnd
14 D3
15 +5
16 DO

VOO WwN

and
D14
+5
D13
gnd
D10
+5
D9
gnd
D6

+5

NKXE<CHNIUZIDARUINTINOOW»
v}
wn

d

883
8959
Q-Q-§

DD CASU1*

t
m
Q,

FF CASL1#*
HH +5
JJ +5

EXPANSION ...86 PIN EDGE (.1) (P2)

VONObdwh
+
4]

=
(=]
+
[y
[

11 exp
12 CONFIG
13 gnd
14 C3*
15 CDAC
16 C1*
17 OVR*
18 XRDY
19 INT2*
20 PALOPE*
21 A5

22 INT6*
23 A6

24 A4
25 gnd
26 A3

27 A2

28 A7
29 A1

30 A8
31 FCO
32 A9
33 FC1
34 A10
35 FC2
36 All
37 gnd
38 Al12
39 A13
40 IPLO*
41 A14
42 IPL1*
43 A15

44 TPL2*
45 Al6
46 BERR*
47 A17
48 VPA#
49 gnd
50 E

51 VMA*
52 A18
53 RES#*
54 A19
55 HLT#*
56 A20
57 A22
58 A21
59 A23
60 BR*
61 gnd
62 BGACK*
63 PD15
64 BG* .
65 PD14
66 DTACK*
67 PD13
68 PRW#*
69 PD12
70 LDS*
71 PD11
72 UDS*
73 gnd
74 AS*
75 PDO
76 PD10
77 PD1
78 PD9
79 PD2
80 PD8
81 PD3
82 PD7
83 PD4
84 PD6
85 gnd
86 PD5

POWER ...7 PIN STRAIGHT (.156) (J14)

-5
+12
gnd
gnd
+5
+5
tick

SobwnRE

JOY STICKS ...DBY male (J11 = right J12 = left)

FORWARD* (MOUSE

BACK* (MOUSE H)

LEET* (MOUSE VQ)

RIGHT* (MOUSE HQ)

POT X (or button 3 ... if used)
FIRE* (or button 1)

+5

VOO H W

GND
POT ¥ (or button 2)

The following port power allocation list is based on many things,
including known peripheral requirements and existing power supply
capabilities. These numbers are maximums for each port when used
independently, but the numbers can be accumulated (except for
joysticks) when a particular system configuration will guarantee
that it exclusively uses more than one port.

The power pins of both joystick ports are tied together and to

a current limited +5 supply. At present, the current limit is set
at 700 ma peak with a 400 ma foldback at steady state short
circuit conditions. The combined utilization of both ports is
limited to 250 ma to insure a minimum voltage drop at the pins.

PORT +5 (ma) +12 (ma) -5 (ma)
RF modulator . 60 .

RGB - 300 175 50
Serial 100 50 50
External disk 270 160 .
Parallel 100 . .
Expansion 1000 50 50
Joystick 0 . 125 . .
Joystick 1 125 . .

kkkkkkkkiiriih PART 2 - MORE OUTSIDE WORLD #d*kakddkdddrhddhiss

The 25-pin D-type connector with pins (DB25P-male) at the rear of the
Amiga is nominally used to interface to parallel printers. In this
capacity, data flows from the Amiga to the printer. This interface
may also be used for input or bidirectional data transfers. The
implementation is similar to Centronics, but the pin assignment and
drive characteristics vary significantly from that specification

(see Pin Assignment). Signal names correspond to those used in the
other places in this appendix, when possible.

PARALLEL CONNECTOR PIN ASSIGNMENT (J8)

PIN NAME

1

HOONOUIdWwN

(=]

11

12

13

14
15
16
17
18
19
20

DRDY*

D0

D2
D3

DS

D7
ACK*

BUSY

DIR

o

1/0
1/0

1/0

NOTES

Output-data-ready signal to parallel device in
output mode, used in conjunction with ACK* (pin 10)
for a two-line asynchronous handshake. 'Functions
as input data accepted from Amiga in input mode
(similar to ACK* in output mode). See timing
diagrams in the following section.

D0-D7 comprise an eight-bit bidirectional bus for
communication with parallel devices,
nominally, a printer.

Output-data-acknowledge from parallel device in
output mode, used in conjunction with DRDY* (pin 1)
for a two-line asynchronous handshake. Functions as
input-data-ready from parallel device in input mode
(similar to DRDY* in output mode) .

See timing diagrams. The 8520 can be programmed to
conditionally generate a level 2 interrupt to the
68000 whenever the ACK* input goes active.

This is a general purpose I/0 pin shorted to a,
serial data I/0 pin (serial clock on pin 12).

Note: Nominally used to indicate printer buffer full.
This is a general purpose I/0 pin shorted to a
serial clock I/O pin (serial data on pin 11).

Note: Nominally used to indicate printer paper out.
This is a general purpose I/0 pin.

Note: nominally a select output from the parallel
device to the Amiga.

9-d

21 GND

22 GCND

23 45V 100 ma maximum. #*** WARNING +5V. ##%
24 ---

25 RESET* O Amiga system reset

PARALLEL. CONNECTOR INTERFACE TIMING, OUTPUT CYCLE

PA<7:0>___ —
PB<7:0>___X X
[<-- T1 --->| |
| < T2 |
\'4 V.
DRDY* oo
Qutput data ready [<- I3 ->|
|<=-- T4 --->|
|<= TS ==>|
ACK* |—— |
Output data acknowledge
Microseconds
Min Typ Max

T1: 4.3 -x- 5.3
J2: nsp -x- upc
T3: nsp 1.4 nsp
T4: 0 -x- upc
T5: nsp -X- upc

Output data hold time.
Output data ready width.
Ready to acknowledge delay.
Acknowledge width.

nsp = not specified
upc = under program control

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE

PA<7:0>__ —
PB<7:0>__X X
<= T1 ===>| .
| T2 -=>|<K===-- >
v |
ACK* — | |
Input data ready |]<= T3 ->| |
[<-= T4 -==>|
|<= IS ==>|
DRDY* i |
Input data acknowledge
Microseconds
Min Typ Max

Input data setup time.

Input data hold time.

Input data ready width.

Input data ready to data
acknowledge delay.

Input data acknowledge width.

Tl: 0 -x- upc
T2: nsp -x- upc
T3: nsp -x- upc
T4: upc -x- upc

T5: nsp 1.4 nsp

Output data setup to ready delay.

nsp = not specified
upc = under program control

SERIAL INTERFACE CONNECTOR SPECIEICATION

This 25-pin D-type connector with sockets (DB25S=female) is used to
interface to RS-232-C standard signals. Signal names correspond to
those used in other places in this appendix, when possible.

WARNING: Pins 14, 21 and 23 carry power. Do not connect to these
pins inadvertently because they can permanently damage external
equipment. Alsc, pins 15-18, 23-25 carry non-standard signals and
should not be connected. NEVER use a fully wired 25 line cable!

SERIAL INTEREACE CONNECTOR PIN ASSIGNMENT (J6)
) RS-232-C

PIN NAME DIk STD NOTES

1l EGND y Frame ground ~-- do not tie to logic ground

2 TXD 0 Y Transmit data

3 RXD 1 y Receive data

4 RIS 0 Y Request to send

5 CIs 1 y Clear to send

6 DSk 1 y Data set ready

7 GND Yy Signal ground -- do not tie to frame ground

€ CD 1 Y Carrier detect

s --- n

10 =~-- n

11 --- Yy

12 --- n

13 --- n

14 -sv n* 50 ma maximuw *** WARNING -5V *##

r 15 AUDO (o] nt Audio output from left (channels 0, 3) port,
intended to send audio to the modem.

16 AUDI n* Audio input to right (channels 1, 2) port,
intended to receive audio from the modem; this
input is mixed with the analog output of the
right (chamnels 1, 2). It is not digitized o~
used by the computer in any way.

17 EP o} n* 716 KHz clock that supports 68000 peripheral

transfers, intended for modem interface; this is

the buffered version of the E clock from the 68000.
18 INT2%* 1 n* Asserting this OPEN COLLECTOR signal will generate

a level 2 interrupt to the 68000 if it is enabled.

15 --- n
20 DIKR 0 y Data terminal ready.
~—>21 +5V n* 100 ma maximumr *** WARNING +5V #*##
. 22 --- n
/237 412V n* 50 ma maximur *** WARNING +12V *##

24, C2* 0 n* 3.58 MHz intended for modems that need a
7§ colorburst clock.

L-d

25 RESB* O n* Amiga system reset.
n*: See warning above

SERIAL INTERFACE CONNECTOR TIMING

Maximum operating frequency is 19.2 KHz. Refer to EIA standard
RS-232-C for operating and installation specifications.

A rate of 31.25 KHz will be supported through the use of a MIDI adapter.

Modem control signals (CTS, RTS, DIR, DSR, CD) are completely under
software control. The modem control lines have no hardware affect
on and are completely asynchronous to TXD and RXD.

SERTAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS

OUTPUTS MIN TYP MAX

Vo(-): -2.5 -x- -5.5 v Negative output voltage range
vo(+): 8 -x- 13.2 \'4 Positive output voltage range
Io: =x- 10 ma Output current

INPUTS MIN TYP MAX

Vi(+): 3 -x- 25 \' Positive input voltage range
Vi(-): -25 -x- .5 \'4 Negative input voltage range
Vhys: -x- 1 -x=- V Input hysteresis voltage

Ii: .3 -x- 10 ma Input current

Unconnected inputs are. interpreted the same as positive input
voltages.

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION

The two 9-pin D-type connectors with pins (male) at the right of the
Amiga nearer the front are used to interface to four types of devices:

1. Mouse or trackball, 3 buttons max.

2. Digital joystick, 2 buttons max.

3. Proportional (pot or proportional joystick), 2 buttons max.
4. Light pen, including pen-pressed-to-screen button.

The connector pin assignments are discussed in sections organized
by similar hardware and/or software operating requirements as shown
in the previous list. Signal names follow those used elsewhere

in this appendix, when possible.

Jil is the right controller port connector (JOY1DAT, POTIDAT).
J12 is the left controller port connector (JOYODAT, POTODAT).

NOTIE: While most of the hardware discussed below is directly
accessible, hardware should be accessed through ROM kernel software.
This will keep future hardware changes transparent to the user.

GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS

A mouse or trackball is a device that translates planar motion into
pulse trains. Quadrature techniques are employed to preserve the
direction as well as magnitude of displacement. The registers JOYODAY
and JOY1DAT become counter registers, with y displacement in the high
byte and x in the low byte. Movement causes the following action:

Up. y decrements
Down: vy increments
Right: x increments
Left. x decrements

To determine displacement, JOYxDAT is read twice with corresponding x
and y values subtracted (careful, modulo 128 arithmetic). Note that
if either count changes by more than 127, both distance and direction
become ambiguous. There is a relationship between the sampling
interval and the maximum speed (that is, change in distance) that

can be resolved as follows:

Velocity < Distance(max)} / SampleTime

Velocity < SQRT(DeltaX**2 + Delta¥**2) / SampleTime
For an Amiga with a 200 count-per-inch mouse sampling during eack
vertical blanking interval, the maximum velocity in either the X or Y
direction becomes:

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec = 38 in/sec

which should be sufficient for most users. '
NOTE: The Amiga software is designed to do mouse update cycles during

vertical blanking. The horizontal and vertical counters are always
valid and may be read at any time.

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

1 \ Vertical pulses JOY[0/1]1DAT<15:8>

2 H Horizontal pulses JOY[0/1]DAT(7:0>

3 vQ Vertical quadrature pulses JOY[0/1]DAT<15:8>

4 HQ Horizontal quadrature pulses JOY[0/1]DAT<7:0>

5 UBUT* Unused mouse button See Proportional Inputs.
6 LBUT* Left mouse button See Fire Button.

7 +5V 125ma max, 200ma surge Total both ports.

8 Ground

9

RBUT* Right mouse button See Proportional Inputs.

GAME PORT INTERFACE TO DIGITAL JOYSTICKS

A joystick is a device with four normally opened switches arranged 90
degrees apart. The JOY[0/1]DAT registers become encoded switch input
ports as follows:

Forward: bit#9 xor bit#8
Left: biti#9
Back: bit#l xor biti#0
Right: bit#l

Data is encoded to facilitate the mouse/trackball operating mode.
NOTE: The right and left direction inputs are also designed to be

right and left buttons, respectively, for use with proportional
inputs. In this case, the forward and back inputs are not used,

vhile right and left become button inputs rather than joystick inputs.

The JOY[0/1]DAT registers are always valid and may be read at any time.
CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

FORWARD* Forward joystick switch JOY[0/1]DAT<9 xor 8>

1

2 BACK* Back joystick switch JOY[0/1]DAT (1 xor 0>
3 LEET* Left joystick switch JOY [0/1]DAT<9>

4 RIGHT* Right joystick switch JOY[0/1]DAT<1>

5 Unused

6 FIRE#* Left mouse button . See Fire Button.

7 +5V 125ma max, 200ma surge Total both ports.

8 Ground

9 Unused

GAME PORT INTERFACE TO FIRE BUTIONS
The fire buttons are normally opened switches routed to the 8520
adapter PRAO0 as follows:

PRAO bit 7 = Fire* left controller port
PRAO bit 6 = Fire* right controller port

Before reading this register, the corresponding bits of the data
direction register must be cleared to define input mode:

DDRA0<7:6> cleared as appropriate

NOTE: Do not disturb the settings of other bits in DDRA0 (Use of ROM
kernel calls is recommended).

Fire buttons are always valid and may be read at any time.

CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS

PIN MNEMONIC DESCRIPTION

-~
-
-x-
-
-
FIRE* Left mouse button/fire button
-x-
-
-

VONONDdWN

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS

Resistive (potentiometer) element linear taper proportional
controllers are supported up to 528k Ohms max (470k +/- 10%
recommended) . The JOY[0/1]DAT registers contain digital
translation values for y in the high byte and x in the low byte.
A higher count value indicates a higher external resistance.
The Amiga performs an integrating analog-to-digital conversion
as follows:

1. POT[0/1]DAT registers are reset and the analog input capacitors
are discharged for the first 7 (261 lines) or 8 (262 lines)
horizontal lines.

2. Once per horizontal line, each analog input is compared to an
internal reference.

3. Any counter whose analog input exceeds the reference stops
incrementing. The counter is stopped for the duration of the
vertical frame.

4. Any counter whose analog input is less than the reference
continues to increment.

NOTE: The POTY and POTX inputs are designated as "right mouse button"
and "unused mouse button" respectively. An opened switch
‘corresponds to high resistance, a closed switch to a low
resistance. The buttons are also available in POTGO and
POTINP registers. It is recommended that ROM kernel calls
be used for future hardware compatibility.

The POT[0/1]DAT registers are typically read during video blanking,
but MAY be available prior to that.

CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS

PIN MNEMONIC DESCRIPTION
Unused
Unused

LBUT#* Left button
RBUT* Right button

HARDWARE REGISTER/NOTES

See Digital Joystick
See Digital Joystick

VOJOULDWN -

POTX X analog in POT[0/1]DAT<7:0>, POTGO, POTINP
Unused

+5V 125ma max, 200 ma surge
Ground

POTY Y analog in POT[0,1]DAT<15:8>, POTGO, POTINP

GAME PORT INTERFACE TO LIGHT PEN°

A light pen is an optoelectronic device whose light-sensitive portion

is placed in proximity to a CRT. As the electron beam sweeps past the
light pen, a trigger pulse 1s generated which can be enabled to latch the
horizontal and vertical beam positions. There is no hardware bit to
indicate this trigger, but this can be determined in the two ways

as shown in chapter 8, "Interface Hardware."

Light pen position is usually read during blanking, but MAY be available
prior to that.

CONNECTCR PIN USAGE FOR LIGHT PEN INPUIS

PIN MNEMONIC DESCRIPTION
Unused
Unused s
Unused
Unused
LPENPR* Light pen pressed See Proportional Inputs
LPENTG* Light pen trigger VPOSR, VHPOSR

+5V 125ma max, 200 ma surge Both ports
Ground
Unused

HARDWARE REGISTER/NOTES

VONOUNAWN -

EXTERNAL DISK INTERFACE CONNECTOR SPECIFICATION

The 23-pin D-type connector with sockets (DB23S) at the rear of the
Amiga is nominally used to interface to MEM devices.

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7)

PIN NAME

1

OINUDdWN

11

12

13
14
15

16
17
18
19
20

21
22

23

RDY*

DKRD*
GND
GND
GND
GND
GND
MIRXD*

SEL2B*
DRESB*

CHNG*

+5V

SIDEB*
WPRO*
TKO*

DKWEB#*
DKWDB#*
STEPB*
DIRB

SEL3B*

SEL1B*
INDEX*

+12v

DIR

1/0

1/0

Q0
33

588 8 888

NOTES

If motor on, indicates disk installed and up to
speed. If motor not on, identification mode. See
below.

MEM input data to Amiga.

Motor on data, clocked into drive's motor-on
flip-flop by the active transition of SELxB*.
Guaranteed setup time is 1.4 usec..

Guaranteed hold time is 1.4 usec.

Select drive 2

Amiga system reset. Drives should reset their
motor-on flip-flops and set their write-protect
flip-flops.

Note: Nominally used as an open collector input.
Drive's change flop is set at power up or when no
disk is not installed. Flop is reset when drive is
selected and the head stepped, but only if a disk
i1s installed.

270 ma maximum; 410 ma surge

When below 3.75V, drives are required to reset
their motor-on flops, and set their write-protect
flops.

Side 1 if active, side 0 if inactive

Asserted by selected, write-protected disk.
Asserted by selected drive when read/write head

is positioned over track 0.

Write gate (enable) to drive.

MEM output data from Amiga.

Selected drive steps one cylinder in the direction
indicated by DIRB.

Direction to step the head. Inactive to step
towards center of disk (higher-numbered tracks) .
Select drive 3.

Select drive 1.

Index ls a pulse generated once per disk revolution,
between the end and beginning of cylinders. The
8520 can be programmed to conditionally generate a
level 6 interrupt to the 68000 whenever the INDEX*
input goes active.

160 ma maximum; 540 ma surge.

o1 -d

EXTERNAL DISK CONNECTOR IDENTIEICATION MODE

-An identification mode is provided for reading a 32-bit serial

identification data stream from an external device. To initialize
this mode, the motor must be turned on, then off. See pin 8,
MIRXD* for a discussion of how to turn the motor on and off. The
transition from motor on to motor off reinitializes the serial
shift register.

After initialization, the SELxB* signal should be left in the
Inactive state.

Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop
a total of 32 times to read in 32 bits of data. The most significant
bit is received first.

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS

$0000 0000 - no drive present.
SFEEF FFFF - Amiga standard 3.25 diskette.
§5555 5555 - 48 TPI double-density, double-sided.

As with other peripheral ID's, users should contact Commodore-Amiga
for ID assignment.

The serial input data is active low and must therefore be inverted
to be consistent with the above table.

EXTERNAL DISK CONNECTOR LIMITATIONS

1. The total cable length, including daisy chaining, must not exceed
1 meter. '

2. A maximum of 3 external devices may reside on this interface.

3. Each device must provide a 1000-Chm pull-up resistor on those

outputs driven by an open-collector device on the Amiga
(pins 8-10, 16-21).

#AdRAAAAASAA44 DART 3 - INTERNAL CONNECTORS A##AAAAASRAXRRARAAS

DISK INTERNAL ...34 PIN RIBBON

VOO IBWN =

CGND
CHNG*

GND
MIROD* (led)
GND

N.C.
GND
INDEX#*
GND
SELOB*
GND
N.C.
GND
N.C.
GND
MIROD*
GND

DIRB
GND
STEPB*
GND
DKWDB#*
GND
DKWEB#*
CGND
TKO*
GND
WPRO*
GND
DKRD*
GNL
SIDEB*

GND
RDY*

(J10)

DISK INTERNAL POWER ...4 PIN STRAIGHT

1
2
3
4

+12
GND
GND
+5

(J13)

11-4d

#424444444 DART 4 - PORT SIGNAL ASSICNMENTS EOR 8520 A##assssssss
Address BFFR01 data bits 7-0 (A12#) (int2)

PA7..game port 1, pin 6 (fire button?*)
PA6..game port 0, pin 6 (fire button*)

PAS. .RDY* disk ready*

PA4. .TKO* disk track 00#%

PA3. .WPRO* write protect*

PA2. .CHNG?* disk change*

PAl..LED* led light (0=bright)

PAO. .OVL memory overlay bit

SP...KDAT keyboard data

CNT. .KCLK

PB7..P7 data 7

PB6..P6 data 6

PB5. .P5 data 5 Centronics parallel interface
PB4..P4 data 4 data

PB3..P3 data 3

PB2..P2 data 2

PBl..P1 data 1

PBO..P0O data 0

PC.. .drdy* - Centronics control
F....ack*

Address BEDRFE data bits 15-8 (A13*) (int6)

PA7..com line DIR*, driven output
PA6..com line RTS*, driven output
PAS. .com line carrier detect#*
PA4..com line CTS*

PA3..com line DSR*

PA2..SEL Centronics control
PA1l. .POUT paper out ---+
PAO. .BUSY busy ===+ |
|
SP...BUSY commodore -+ |
CNT. .POUT commodore ---+
PB7, .MIR* motor
PB6. .SEL3#* select external 3rd drive
PB5. .SEL2* select external 2nd drive
PB4, .SEL1#* select external 1lst drive
PB3..SEL0* select internal drive
PB2..SIDE#* side select*
PB1..DIR direction
PB0. .STEP* step*
PC...not used

F....INDEX* disk index*

PORT O
©,0 o o o
o o o o

FIREO\

PORT 1
©c.0 o o o
© o o o

Reading FIRE BUTTONS

FIRET\
7 0
‘ui.n é ¢ IT. PRAO
E | & DON'T TRASH THESE BITS BEEOFF
il B]] | | I
Data Direction
0 0 TYPICAL DDRAQO
BFE2FF
0 0 0,0,0, 0, 1]RMWRed
IN IN ouT

<«+——— To front

of machine

=2}

PORTO=Left(1 2 3 4 5
© 9 _0 o ©

7 9

o o

BACKO\ (MOUSE H)

FORWARDO\ (MOUSE V)

RIGHTO\ (MOUSE HQ)| ©®

JOY1DAT
DF0OC

is wired similarly
for PORT 1

(;—ﬁ—, LEFTO\ (MOUSE vQ) |°

MOUSE 0
Y Counter

HEENEE

MOUSEO
X Counter

L1l

Vertical
MOUSE Counters

Horizontal

JOYODAT
DFFOCA
Read Only

E-12

VPOSR Read Only
DFF004

VHPOSR Read Only
DFF006

BPLCONO Write Only

[11 L 1 1 1 1ty 1 4 |DFFIO4
15 3 0
I Light Pen Enable
POTINP Read Only
1 11 { § [t | 1 1| | |DFFo16 (Bit8)
15 0 ‘
PEN PRESS = POTOX
PORT O
Q 2 3 4 5)
©o_0 ©0 o
6
6 o o o
Light Pen
LIGHT PEN Y latchesV&H positions

MOUSE QUADRATURE

Case 1: Count Up:

v/
v /N /N
Case 2: Count Down: | |

v/
vao N/ _/ ___/
o _/ /S S S
S e N e N s
D2 I N

PORT 1 Connector

G [(S |
Pm 9 COUNTEIF\§ COUNTER Read Only
+5 POT1Y ’_b_
Max = 470K
+10%
47nf
OPEN \/ K—l I
X POTGO
DFFO034
Write Only
> > I XIX]>[>1>x]x =
E | £ |E[EIEIF|E|E <
3 | 3 |3]2[3]5[3]&kwm 5
BIT15 . ° ° BITO
. . [] []
* [[} .
> x| >l |
o o - a
0 0 0 0 0
14 POTINP
DFF016
Read Only

POT COUNTER

PORT O

POT COUNTERS

POTOX
POTOY
POTOY POTOX POTODAT
COUNTER | COUNTER | DFF012
POT1X
POT1Y
Y y
POT1Y POT1X
COUNTER | counter | POTIDAT
LATCH LATCH DFF014
IIPOTGO
DFF034
IPOTINP
'DFF016

Appendix F

Peripheral Interface Adapters

This appendix contains information about the 8520 peripheral interface adapters.

QUICK REFERENCE -- ERIEF ADDRESS MAP FOR 85208

The system hardware selects the 8520s (also called CIAs) when the
upper three address bits are 101. Furthermore, CIAA is selected

when Al2 is low, Al3 high; CIAB is selected when Al2 is high, Al13 low.

You can use either byte or word addresses to access the 8520s.

For byte access (seems to be the usual case), A0 must be 0 for CIAA,
1 for CIAB. For word access, CIAB communicates on data bits 15-8;
CIAA commnicates on data bits 7-0. (A0 is always 0 for word access,
naturally.)

Address bits All, A10, A9, and A8 are used to specify which of the 16

internal registers you want to access. This is indicated by "r" in
the address. All other bits are don't cares. So, CIAA is selected
by the following binary address: 101x xxxx xx01 rrrr xxxx xxx0.
CIAB address: 101x xxxx xx10 rrrr xxxx xxxl

With future expansion in mind, we have decided on the following
addresses: CIAA = BFEr0l1; CIAB = BEDr00.

CIAB Address Map

Byte Register Data bits
Address Name 7 6 S 4 3 2 1 0
BFD000 /DIR RIS /D /CTS /DSR SEL POUT BUSY
BFD100 /MIR /SEL3 /SEL2 /SEL1 /SELO /SIDE DIR /STEP
BED200 ddr for port A (BED000); 1 = output (set to 0xC0)
BED300 ddr for port B (BED100); 1 = output {set to 0xFE)
BFD400 CIAB timer A low byte
BED500 CIAB timer A high byte
BED600 CIAB timer B low byte
BED700 CIAB timer B high byte
BFD800 Horizontal sync event counter bits 7-0
BFDS00 Horizontal sync event counter bits 15-8
BFDAOO Horizontal sync event counter bits 23-16
BEDB00 not used
BEDC00 CIAB serial data register
BEDD0O CIAB interrupt control register
BEDEO0O CIAB Control register A
BEDEOO CIAB Control register B

Note: CIAB can generate INT6.

CIAA Address Map

Byte Register Data bits o
Address Name 7 6 5 4 3 2 1 0
BFE001 /FIR1 /FIR0 /RDY /IKO WPRO /CHNG /LED OVL
BFE101 Parallel port
BFE201 ddr for port A (BFE001);l=output (set to 0x03)
BFE301 ddr for port B (BFE101) ;1=output (can be in or out)
BFE401 CIAA timer A low byte
BFES01 CIAA timer A high byte
BFE601 CIAA timer B low byte
BFE701 CIAA timer B high
BFE801 60 Hz event counter bits 7-0
BFE901 60 Hz event counter bits 15-8
BFEAO1 60 Hz event counter bits 23-16
BFEBO1 not used
BFECOL CIAA serial data register (keyboard)
BFEDO1 CIAA interrupt control register
BFEEO1 CIAA control register A
BEEF01 CIAA control register B

Note: CIAA can generate INT2.

RARRRRRARARRRAKARARAARRRAAARRRRRARAARARARRARARRARRRARRRRARAARRARAAL

INTERFACE SIGNALS

Clock input

The 02 clock is a TTL compatible input used for internal device
operation and as a timing reference for communicating with the
system data bus.

CS - chip-select input

The CS input controls the activity of the 8520. A low level on CS.
vhile 02 is high causes the device to respond to signals on the R/W
and address (RS) lines. A high on CS prevents these lines from
controlling the 8520. The CS line is normally activated (low) at
02 by the appropriate address combination.

R/M - read/write input

The R/W signal is normally supplied by the microprocessor and
controls the direction of data transfers of the 8520. A high on
R/W indicates a read (data transfer out of the 8520), while a
low indicates a write (data transfer into the 8520).

RS3-RS0 - address inputs

The address inputs select the internal registers as described by
the register map.

DB7-DB0 - data bus inputs/outputs

The eight data bus output pins transfer information between the 8520
and the system data bus. These pins are high impedance inputs unless
CS is low and R/W and 02 are high, to read the device. During this
read, the data bus output buffers are enabled, driving the data from
the selected register onto the system data bus.

IRQ - interrupt request output

IRQ is an open drain output normally connected to the processor
interrupt input. An external pull-up resistor holds the signal
high, allowing multiple IRQ outputs to be connected together. The
IRQ output is normally off (high impedance) and is activated low
as indicated in the functional description.

- -~ -

A low on the RES pin resets all internal registers. The port pins
are set as inputs and port registers to zero (although a read of
the ports will return all highs because of passive pull-ups).

The timer control registers are set to zero and the timer latches
to all ones. All other registers are reset to zero.

REGISTER MAP

............. A

Each 8520 has 16 registers that you may read or write. Here is the
list of registers and the access address of each within the memory
space dedicated to the 8520:

Register

RS3 RS2 RS1 RS0 i#(hex) NAME MEANING
0 0 0 0 0 PRA Peripheral data register A
0 9 1 1 PRB Peripheral data register B
0 0 1 0 2 DDRA Data direction register A
0 0 1 1 3 DDRB Direction register B
0 1 0 0 4 TALO Timer A low register
0 1 0 1 5 TAHI Timer A high register
0 1 1 0 6 TBLO Timer B low register
0 1 1 1 7 TBHI Timer B high register
1 0 0 0 8 Event LSB
1 0 0 1 9 Event 8-15
1 0 1 0 5 Event MSB
i 0 1 1 E No connect
1 1 0 0o . C SDR Serial data register
1 1 0 1 B ICR Interrupt control register
1 1 1 0 E .~ CRA Control register A
1 1 1 1 E "CRB Control register B
SOETWARE NOTE:

The operating system kernel has already allocated the
use of all four of the timers TA and TB in the 8520s.

If you are running under control of the system exec,

be aware of the following allocation of system resources:

8520A, timer A --

8520A, timer B --

85208, timer A --
8520B, timer B --

Commodore serial communications
(if no serial communications is

ing, timer becomes available).
Video beam follower
(used when synchronizing the blitter
device to the video beam, see the
description of QBSBlit() in the system
software manual). If no beam-sync'ed
blits are in process, this timer
will be available.

Keyboard (used continuously, whenever
system Exec is in control).

Virtual timer device (used
continuously whenever system Exec 1s
in control; used for task switching
and interrupts).

REGISTER NAMES

The names of the registers within the 8520s are as follows. The
address at which each is to be accessed is given in this list.

8520-A

8520-B | NAME | EXPLANATION

BFE0O1
BFE101
BEE201
BFE301
BFE401
BFES01
BFE60L
BFE701
BFES01
BFESOL
BFEAOL
BFEBO1
BFECO1
BFEDOL1
BFEEO1
BEEF01

(write)/(read mode)

BED000 PRA Peripheral data register A
BED100 PRB Peripheral data register B
BED200 DDRB Data direction register "A"
BFD300 DDRA Data direction register "B"
BED400 TALO TIMER A low register

BED500 TAHI TIMER A high register
BFD600 TBLO TIMER B low register

BFD700 TBHI TIMER B high register

BED800 Event LSB

BED900 Event 8 - 15

BEDA0O Event MSB

BEDB0O No connect

BEDC00 - SDR Serial data register
BFDDO0 ICR Interrupt control register
BFDEOO0 CRA Control register A

BEDE0O0 CRB Control register B

REGISTER FUNCTIONAL DESCRIPTION:

I/0 PORTS (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit peripheral data register (PR
and an 8-bit data direction register (DDR). If a bit in the DIR is

set to a 1, the corresponding bit position in the PR becomes an
output. If a DDR bit is set to a 0, the corresponding PR bit is
defined as an input.

When you READ a PR register, you read the actual current state of
the I/0 pins (PA0O-PA7, PB0-PB7, regardless of whether you have set

them to be inputs or outputs.

Ports A and B have passive pull-up devices as well as active
pull-ups, providing both CMOS and TIL compatibility. Both ports
have two TTL load drive capability.

In addition to their normal I/O operations, ports PB6 and PB7 also

provide timer output functions.

HANDSHAKING

Handshaking occurs on data transfers using the PC output pin
and the FLAG input pin. PC will go low on the third cycle
after a port B access. This signal can be used to indicate
"data ready" at port B or "data accepted" from port B.
Handshaking on 16-bit data transfers (using both ports A and B)
is possible by always reading or writing port A first. FELAG

is a negative edge-sensitive input that can be used for
receiving the PC output from another 8520 or as a general-
purpose interrupt input. Any negative transition on ELAG
will set the FLAG interrupt bit.

REG NAME D7 D6 D5 D4 D3 D2 Dr DO
0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PBl PBO
2 DDRA DPA7 DPA6 DPAS DPA4 DPA3 DPA2 DPA1 DPAO
3 DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB1 DPB0

INTERVAL TIMERS (TIMER A, TIMER B)

Each interval timer consists of a 16-bit read-only timer
counter and a 16-bit write-only timer latch. Data written
to the timer is latched into the timer latch, while data
read from the timer is the present contents of the timer
counter.

The latch is also called a prescalar in that it represents

the countdown value which must be counted before the timer
reaches an underflow (no more counts) condition. This latch
(prescalar) value is a divider of the input clocking frequency.
The timers can be used independently or linked for extended
operations. Various timer operating modes allow generation

of long time delays, variable width pulses, pulse trains, and
variable frequency waveforms. Utilizing the CNT input, the
timers can count external pulses or measure frequency, pulse
width, and delay times of external signals.

Each timer has an associated control register, providing
independent control over each of the following functions:

START/STOP

A control bit allows the timer to be started or stopped
by the microprocessor at any time.

PB on/off

A control bit allows the timer output to appear on a port B
output line (PB6 for timer A and PB7 for timer B). This
function overrides the DDRB control bit and forces the
appropriate PB line to become an output.

Toggle/pulse

A control bit selects the output applied to port B while
the PB on/off bit is ON. On every timer underflow, the
output can either toggle or generate a single positive
pulse of one cycle duration. The toggle output is set
high whenever the timer is started, and set low by RES.

One-shot/continuous

A control bit selects either timer mode. In one-shot mode,
the timer will count down from the latched value to zero,
generate an interrupt, reload the latched value, then stop.
In continuous mode, the timer will count down from the
latched value to zereo, generate an interrupt, reload the
latched value, and repeat the procedure continuously.

In one-shot mode, a write to timer-high (register 5 for

timer A, register 7 for Timer B) will transfer the timer
latch to the counter and initiate counting regardless of
the start bit.

Force load

A strobe bit allows the timer latch to be loaded into the
timer counter at any time, whether the timer is running or
not.

INPUT MODES
Control bits allow selection of the clock used to decrement the

timer. Timer A can count 02 clock pulses or external pulses
applied to the CNT pin. Timer B can count 02 pulses, external

CNT pulses, timer A underflow pulses, or timer A underflow pulses

while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on

a force load, or following a write to the high byte of the pre-

scalar while the timer is stopped. If the timer is running, a write

to the high byte will load the timer latch but not the counter.
BIT NAMES on READ-register
REG NAME D7 D6 D5 D4 D3 D2 D1 Do

4 TALO TAL7 TAL6 TALS TAL4 TAL3 TAL2 TAL1 TALO
S TAHI = TAH7 TAH6 TAHS TAH4 TAH3 TAH2 TAH1 TAHO
6 TBLO TBL7 TBL6 TBL5 TBL4 TBL3 TBL2 TBL1 TBLO
7 TBHI TBH7 TBH6 TEHS TBH4 TBH3 TBH2 TBH1 TEHO

BIT NAMES on WRITE-register
REG NAME D7 D6 D5 D4 D3 D2 DI DO

TALO PAL7 PAL6 PALS PAL4 PAL3 PAL2 PAL1 PALO
TAHI PAH7 PAH6 PAHS PAH4 PAH3 PAH2 PAH1 PAHO
TBLO PBL7 PBL6 PBLS PBL4 PBL3 PBL2 PBL1 PBL0
TBHI PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBH1 PBHO

SO b

TIME OF DAY CLOCK

TOD consists of a 24-bit binary counter. Positive edge transitions
on this pin cause the binary counter to increment. The TOD pin has a
passive pull-up on it.

A programmable alarm is provided for generating an interrupt at a
desired time. The alarm registers are located at the same addresses
as the corresponding TOD registers. Access to the alarm is governed
by a control register bit. The alarm is write-only; any read of a
TOD address will read time regardless of the state of the ALARM
access bit.

A specific sequence of events must be followed for proper setting and
reading of TOD. TOD is automatically stopped whenever a write to the
register occurs. The clock will not start again until after a

write to the LSB event register. This assures that TOD will always
start at the desired time.

Since a carry from one stage to the next can occur at any time
with respect to a read operation, a latching function is included
to keep all TOD information constant during a read sequence.

All TOD registers latch on a read of MSB event and remain latched
until after a read of LSB event. The TOD clock continues to count
when the output registers are latched. If only one register is to
be read, there is no carry problem and the register can be read
"on the fly" provided that any read of MSB event is followed by a
read of LSB Event to disable the latching.

BIT NAMES for WRITE TIME/ALARM or READ TIME
REG NAME

8 ILSBEvent E7 E6 E5 E4 E3 E2 FE1 EO
9 Event 8-15 E15 E14 E13 E12 E11 E10 E9 E8
A MsB Event E23 E22 E21 E20 E19 E18 E17 E16

WRITE
CRB7 = 0
CRB7 = 1 ALARM

SERIAL PORT (SDR)

The serlal port is a buffered, 8-bit synchronous shift register,
A control bit selects input or output mode.

INPUT MODE

In input mode, data on the SP pin is shifted into the shift
register on the rising edge of the signal applied to the CNT pin.
After eight CNT pulses, the data in the shift register is dumped
into the serial data register and an interrupt is generated.

9-d

OUTPUT MODE

In the output mode, Timer A is used as the baud rate generator.
Data is shifted out on the SP pin at 1/2 the underflow rate of
Timer A. The maximum baud rate possible is 02 divided by 4, but
the maximum usable baud rate will be determined by line loading and
the speed at which the receiver responds to input data.

To begin transmission, you must first set up Timer A in continuous
mode, and start the timer. Transmission will start following a
write to the serial data register. The clock signal derived from
Timer A appears as an output on the CNT pin. The data in the serial
data register will be loaded into the shift register, then shifted
out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the next falling edge of CNT and remains valid
until the next falling edge.

After eight CNT pulses, an interrupt is generated to indicate that
more data can be sent. If the serial data register was reloaded
with new information prior to this interrupt, the new data will
automatically be loaded into the shift register and transmission
will continue. .

If no further data is to be transmitted after the eighth CNT pulse,
CNT will return high and SP will remain at the level of the last
data bit transmitted.

SDR data is shifted out MSB first. Serial input data should appear
in this same format.

BIDIRECTIONAL FEATURE

The bidirectional capability of the serial port and CNT clock allows
many 8520s to be connected to a common serial communications bus on
which one 8520 acts as a master, sourcing data and shift clock,
while all other 8520 chips act as slaves. Both CNT and SP outputs
are open drain to allow such a common bus. Protocol for
master/slave selection can be transmitted over the serial bus or
via dedicated handshake lines.

REG NAME D7 D6 D5 D4 D3 D2 DI DO

C SDR S7 S6 S5 sS4 S3 S2 81 SO

INTERRUPT CONTROL REGISTER (ICR)
There are five sources of interrupts on the 8520:

-Underflow from Timer A (timer counts down past 0)
-Underflow from Timer B

-TOD alarm

-Serial port full/empty

-Flag

A single register provides masking and interrupt information. The
interrupt control register consists of a write-only MASK register
and a read-only DATA register. Any interrupt will set the
corresponding bit in the DATA register. Any interrupt that is
enabled by a 1-bit in that position in the MASK will set the IR bit
(MSB). of the DATA register and bring the IRQ pin low. In a
multichip system, the IR bit can be polled to detect which chip has
generated an interrupt request.

When you read the DATA register, its contents are cleared (set to 0),
and the IRQ line returns to a high state. Since it is cleared on a
read, you must assure that your Interrupt polling or interrupt service
code can preserve and respond to all bits which may have been set in
the DATA register at the time it was read. With proper preservation
and response, it is easily possible to intermix polled and direct
interrupt service methods.

You can set or clear one or more bits of the MASK register without
affecting the current state of any of the other bits in the register.
This is done by setting the appropriate state of the MSBit, which is
called the set/clear bit. In bits 6-0, you yourself form a mask
that specifies which of the bits you wish to affect. Then, using
bit 7, you specify HOW the bits in corresponding positions in the
mask are to be affected.

o If bit 7 is a 1, then any bit 6-0 in your own mask word
vwhich is set to a 1 sets the corresponding bit in the
MASK register. Any bit that you have set to a 0 causes
the MASK register bit to remain in its cwrrent state.

o If bit 7 is a 0, then any bit 6-0 in your own mask word
which is set to a 1 clears the corresponding bit in the MASK
register. Again, any 0 bit in your own mask word causes no
change in the contents of the corresponding MASK register bit.

If an interrupt is to occur based on a particular condition,
then that corresponding MASK bit must be a 1.

Example: Suppose you want to set the Timer A interrupt bit
(enable the Timer A interrupt), but want to be
sure that all other interrupts are cleared. Here
is the sequence you can use:

movi.b 01111110B,A0

mov.b A0,ICR ;MSB is 0, means clear
;any bit whose value is
;1 in the rest of the byte

movi.b 10000001B,A0

mov.b A0,ICR ;MSB is 1, means set
;any bit whose value is
;1 in the rest of the byte
;(do not change any values
; wherein the written value
; bit is a zero)

Read interrupt control register:

REG NAME D7 D6 D5 D4 D3 D2 D1 DO
D IR IR o0 0 FLC SP ARMTS TA
Write interrupt control MASK:

REG NAME D7 D6 D5 D4 D3 D2 D1 DO

D ICR s/ x x FLG SP- ALRMTB TA

CONTROL REGISTERS
There are two control registers in the 8520, CRA and CRB. CRA is
associated with Timer A and CRB is associated with Timer B. The
format of tha registers is as follows:
CONTROL REGISTER A:
BIT NAME EUNCTION
0 START 1 = start Timer A, 0 = stop Timer A.
This bit is automatically reset (= 0) when
underflow occurs during one-shot mode.
PBON 1 = Timer A output on PB6, 0 = PB6 is normal operation.
OUTMODE 1 = toggle, 0 = pulse.

RUNMODE 1 = one-shot mode, 0 = continuous mode.

W N e

LOAD 1 = force load (this is a strobe input, there is no
data storage; bit 4 will always read back a zero
and writing a 0 has no effect.)

5 INMODE 1 = Timer A counts positive CNT transitions,
0 = Timer A counts 02 pulses.

6 SPMODE 1 = Serial port=output (CNT is the source of the shift
clock,
0 = Serial port=input (external shift clock is
required)

BIT MAP OF REGISTER CRA:
REG# NAME TOD IN SPMODE INMODE LOAD RUNMODE OUTMODE PBON START
E CRA 0=60Hz O=input 0=02 1l=force 0=cont. 0=pulse 0=PB60OFF 0=stop

1=50Hz l=output 1=CNT load Il=one- 1=toggle 1=PB60N 1l=start
(strobe) shot

) |€==mmmmmm Timer A Variables >|
]
~ All unused register bits are unaffected by a write and forced to 0 on a read.

CONTROL REGISTER B:
BIT NAME FUNCTION

0 START 1 = start Timer B, 0 = stop Timer B.
This bit is automatically reset (= 0) when
underflow occurs during one-shot mode.

PBON 1 = Timer B output on PB7, 0 = PB7 is normal
operation.

OUTMODE 1 = toggle, 0 = pulse.

RUNMODE 1 = one-shot mode, 0 = continuous mode.

LOAD 1 = force load (this is a strobe input, there is no
data storage:; bit 4 will always read back a
zero and writing a 0 has no effect.)

BwN

6,5 INMODE Bits CRB6 and CRBS select one of four possible
input modes for Timer B, as follows:

CRB6 CRB5 Mode Selected

0 0 Timer B counts 02 pulses

0 1 Timer B counts positive CNT transitions
1 0 Timer B counts Timer A underflow pulses
1 1 Timer B counts Timer A underflow pulses

while CNT pin is held high.
7 ALARM 1 = writing to TOD registers sets Alarm
0 = writing to TOD registers sets TOD clock.
Reading TOD registers always reads TOD clock,
regardless of the state of the Alarm bit.
BIT MAP OF REGISTER CRB:

REG
NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START

F CRB 0=TOD 00=02 l1=force 0=cont. 0=pulse 0=PB70FF 0=stop

1=Alarm 01=CNT load 1l1=one- Il<toggle 1<PB70N 1l=start
10=Timer A (strobe) shot
11=CNT+
Timer A
|€memememm e Timer B Variables---<=========== od |

All unused register bits are unaffected by a write and forced to 0 on
a read.

PORT SIGNAL ASSIGNMENTS

This part specifies how various signals relate to the available ports
of the 8520. This information enables the programmer to relate the
port addresses to the outside-world items (or internal control signals)
which are to be affected. This part is primarily for the use of the

systems programmer and should generally not be used by applications Address BEDRFE data bits 15-8 (A13%) (int6)
programmers. Systems software normally is configured to handle the

setting of particular signals, no matter how the physical connections PA7..com line DIR*, driven output
may change. In other words, 1f you have a version of the system PA6..com line RTS*, driven output
software that matches the rev. level of the machine (normally a true PAS, .com line carrier detect*
condition), when you ask that a particular bit be set, you don't care PA4..com line CIS*
vwhich port that bit is connected to. Thus applications programmers PA3..com line DSR#*
should rely on system documentation rather than going directly to the PA2..SEL centronics control
ports. Note also that in this, a multi-tasking operating system, many PAl. .POUT paper out ---+
different tasks may be competing for the use of the system resources. PAO. .BUSY busy ==t |
Applications programmers should follow the established rules for [
resource access in order to assure compatibility of their software SP...BUSY commodore -+ |
with the system. CNT. .POUT commodore ---+

PB7. .MIR#* motor
Address BFERFF data bits 7-0 (A12%) (int2) PB6. .SEL3* select external 3rd drive

PB5, .SEL2* select external 2nd drive
PA7..game port 1, pin 6 (fire buttont) PB4..SEL1* select external lst drive
PA6..game port 0, pin 6 (fire button*) PB3..SELO* select internal drive
PAS. .RDY#* disk ready* . PB2. .SIDE* side select*
PA4..TKO* disk track 00% PB1..DIR direction
PA3. .WPRO* write protect# PB0..STEP* step*
PA2. .CHNG* disk change*
PAl..LED* led light (0=bright) PC...not used
PAQ..OVL memory overlay bit F....INDEX* disk index*
SP...KDAT keyboard data
CNT. .KCLK
PB7..P7 data 7
PB6..P6 data 6
PB5..P5 data 5 Centronics parallel interface
PB4..P4 data 4 data
PB3..P3 data 3
PB2..P2 data 2
PBl..P1 data 1
PB0..PO data 0
PC...drdy* centronics control

F....ack*

Appendix G |

Amiga Auto-configuration Architecture

This appendix, which appeared in earlier versions of the Amiga Hardware Reference
Manual, has been deleted. Also, appendix I, which was distributed as errata, should not
be used.

For the latest information about the interface to the Amiga microprocessor bus, please
contact the Technical Support Manager at Commodore Business Machines or
Commodore-Amiga.

Appendix H

Keyboard

This appendix contains a description of the Amiga keyboard interface and the hardware
of the Amiga keyboard.

KEYBOARD INTERFACE Keycodes:

Each key has a keycode associated with it (see accompanying

The keyboard plugs into the computer via a four-conductor cable similar table) . Keycodes are always 7 bits long. The eighth bit is a

to a telephone handset coily cord (in fact, a telephone handset cable "key-up"/"key-down" flag; a 0 (high level) means that the key
may be substituted in a pinch). The four wires provide S-volt power, was pushed down, and a 1 (low level) means the key was released
ground, and two signals called KCLK (keyboard clock) and KDAT (keyboard (the CAPS LOCK key is different -- see below).

data). KCLK is unidirectional and always driven by the keyboard;
KDAT is driven by both the keyboard and the computer. Both signals For example, here is a diagram of the "B" key being pushed down.

are open-collector; there are pullup resistors in both the keyboard The keycode for "B" is 35H = 00110101; due to the rotation of
(inside the keyboard microprocessor) and the computer. the byte, the bits transmitted are 01101010.

KK~ A/ A/ \/ S \/ /S \/ \J
KDAT \ / \ / \ /
0 1 1 0 1 0 1 0

Keyboard communications:

The keyboard transmits 8-bit data words serlally to the

main unit. Before the transmission starts, both KCLK and KDAT
are high. The keyboard starts the transmission by putting out
the first data bit (on KDAT), followed by a pulse on KCLK (low
then high); then it puts out the second data bit and pulses
KCLK until all eight data bits have been sent. After the

end of the last KCLK pulse, the keyboard pulls KDAT high again.

In the next example, the "B" key is released. The keycode
is still 35H, except that bit 7 is set to indicate "key-up,"
resulting in a code of BS5H = 10110101. After rotating, the
transmission will be 01101011:

When the computer has received the eighth bit, it must pulse KCLK / \/ v /N VY
KDAT low for at least 75 microseconds, as a handshake signal . -
to the keyboard. KDAT \ / N/ \ /
0 1 1 0 h 0 1 1
All codes transmitted to the computer are rotated one bit before
transmission. The transmitted order is therefore 6-5-4-3-2-1-0-7. CAPS LOCK key:

The reason for this is to transmit the up/down flag last, in
order to cause a key-up code to be transmitted in case the keyboard
is forced to restore lost sync (explained in more detail below) .

This key is different from all the others in that it

generates a keycode only when it is pushed down, never when it
is released. However, the up/down bit is still used. When
pushing the CAPS LOCK key turns on the CAPS LOCK LED, the
up/down bit will be 0; when pushing CAPS LOCK shuts off the LED,
the up/down bit will be 1.

The KDAT line is active low; that is, a high level (+5V) is
interpreted as 0, and a low level (0V) is interpreted as 1.

KCLK W M N/ \/ \/ /S \S \/
KDAT \ X X X X X X X /

"Out-of sync" condition:

Noise or other glitches may cause the keyboard to get out of sync

) (& (4 I @ @ © O

© @ ((with the computer. This means that the keyboard is finished
First Last transmitting a code, but the computer is somewhere in the middle
sent sent of receiving it.

The keyboard processor sets the KDAT line about 20 microseconds If this happens, the keyboard will not receive its handshake
before it pulls KCLK low. KCIK stays low for about 20 microseconds, pulse at the end of its transmission. If the handshake pulse
then goes high again. The processor waits another 20 microseconds does not arrive within 143 ms of the last clock of the
before changing KDAT. transmission, the keyboard will assume that the computer

is still waiting for the rest of the transmission and is
Therefore, the bit rate during transmission is about 60 microseconds therefore out of sync. The keyboard will then attempt to
per bit, or 17 kbits/sec. restore sync by going into "resync mode." In this mode, the

keyboard clocks out a 1 and waits for a handshake pulse.

If none arrives within 143 ms, it clocks out another 1 and
waits again. This process will continue until a handshake
pulse arrives.

Once sync is restored, the keyboard will have clocked a garbage
character into the computer. That is why the key-up/key-down

flag is always transmitted last. Since the keyboard clocks out
1's to restore sync, the garbage character thus transmitted will
appear as a key release, which is less dangerous than a key hit.

Whenever the keyboard detects that it has lost sync, it will
assume that the computer failed to receive the keycode that

it had been trying to transmit. Since the computer is unable
to detect lost sync, it is the keyboard's responsibility to
inform the computer of the disaster. It does this by transmit-
ting a "lost sync" code (value F9H = 11111001) to the computer.
Then it retransmits the code that had been garbled.

Note: the only reason to transmit the "lost sync" code to the
computer is to alert the software that something may be screwed
up. The "lost sync" code does not help the recovery process,
because the garbage keycode can't be deleted, and the correct
key code could simply be retransmitted without telling the
computer that there was an error in the previous one.

Power-up sequence:

There are two possible ways for the keyboard to be powered up
under normal circumstances: the computer can be turned on
with the keyboard plugged in, or the keyboard can be plugged
into an already "on" computer. The keyboard and computer
must handle either case without causing any upset.

The first thing the keyboard does on power-up is to perform
a self-test. This involves a ROM checksum test, simple RAM
test, and watchdog timer test. Whenever the keyboard is

powered up (or restarted -- see below), it must not transmit

anything until it has achieved synchronization with the computer.

The way it does this is by slowly clocking out 1 bits, as
described above, until it receives a handshake pulse.

If the keyboard is plugged in before power-up, the keyboard
may continue this process for several minutes as the computer
struggles to boot up and get running. The keyboard must
continue clocking out 1s for however long is necessary,

until it receives its handshake.

If the keyboard is plugged in after power-up, no more than
eight clocks will be needed to achieve sync. In this case,
however, the computer may be in any state imaginable but
must not be adversely affected by the garbage character it
will receive. Again, because it receives a key release,
the damage should be minimal. The keyboard driver must
anticipate this happening and handle it, as should any
application that uses raw keycodes.

Note: the keyboard must not transmit a "lost sync" code after
resyncing due to a power-up or restart; only after resyncing
due to a handshake time-out.

Special

Once the keyboard and computer are in sync, the keyboard must
inform the computer of the results of the self-test. If the
self-test failed for any reason, a "selftest failed" code
(value FCH = 11111100) is transmitted (the keyboard does not
wait for a handshake pulse after sending the "selftest failed"
code) . After this, the keyboard processor goes into a loop in
vhich it blinks the CAPS LOCK LED to inform the user of the
failure. The blinks are coded as bursts of one, two, three,
or four blinks, approximately one burst per second. One
blink = ROM checksum failure; two blinks = RAM test failed;
three blinks = watchdog timer test failed; four blinks = a
short exists between two row lines or one of the seven
special keys (this last test isn't implemented yet).

If the self-test succeeds, then the keyboard will proceed to
transmit any keys that are currently down. First, 1t sends
an "initiate powerup key stream" code (value FDH = 11111101),
followed by the key codes of all depressed keys (with
keyup/down set to "down" for each key). After all keys are
sent {usually there won't be any at all), a "terminate key
stream" code (value FEH = 11111110) is sent. Finally, the
CAPS LOCK LED is shut off. This marks the end of the
start-up sequence, and normal processing commences.

Note: These special codes, (that is, FCH et al) are 8-bit
numbers; there is no up/down flag associated with them.
However, the transmission bit order is the same as previously
described.

The usual sequence of events will therefore be: power up;
synchronize; transmit "initiate powerup key stream" (EDH);
transmit “terminate key stream" (FEH).

Hard Reset

The keyboard has the additional task of resetting the computer
on the command of the user. The user initiates hard reset by
simultaneously pressing the CTRL key and the two "AMIGA" keys.
The keyboard responds to this input by pulling KCLK low and
starting a 500-ms timer. At the end of the 500 ms, the
processor checks the three keys to see if they are still down,
and if so, restarts the 500-ms timer. This continues until one
or more of the three keys is released.

When one or more keys is released, then the processor will wait

until the end of the 500 ms. Then it jumps to its start-up
code, which releases KCLK and restarts the keyboard.

Codes

The special codes that the keyboard uses to communicate with
the main unit are summarized here.

¥-H

Code Name Meaning PORTS
F9 Last key code bad, next code is the same code As mentioned, there are four I/O ports of 8 bits each. The following
retransmitted (used when keyboard and main unit table describes each port and the meaning of each bit:
get out of sync).
FA Keyboard output buffer overflow PORT A -- 6500/1 address 080 hex
FB Unused PA.O In/Out KDAT output/positive edge detect input (*)
EC Keyboard selftest failed PA.1 Out KCLK output (*)
ED Initiate power-up key stream PA.2 In Row 0 input (low = switch closed).
FE Terminate key stream PA.3 In Row 1 input
FF - Unused PA.4 In Row 2 input
PA.5 In Row 3 input
PA.6 In Row 4 input
PA 7 In Row 5 input
KEYBOARD HARDWARE (*) These two bits are swapped from the previous code, to take

---------------- advantage of the positive edge-detect capability of the
‘PA.0 pin (it is easier to detect a handshake this way).

This is a description of the hardware insides of the Amiga keyboard.
PORT B -- 6500/1 address 081 hex

Out Column 12 output
Out Column 13 output
Out Column 14 output
Out Column 15 output (*)

There are 91 keys on the keyboard. 84 of them are arranged in a matrix
of 6 rows and 15 colums (leaving six holes in the matrix). Each row is
an input and has a pullup resistor to VCC on it (R=3.3K to 11K). Each
column is an open-collector output with no pullup, i.e., it can drive

a column line low, but not high. The program will drive columns one

This description is valid only for the second revision of the keyboard, PB.0 In Right SHIET key input (low = switch closed).
the version with the watchdog tither. PB.1 In Right ALT key input
PB.2 1In Right AMIGA key input
PROCESSOR PB.3 In CIRL key input
PB.4 In Left SHIFT key input
The processor is a Rockwell/NCR/MOS Technologies 6500/1. It contains 2K PB.S In Left ALT key input
bytes of ROM, 64 bytes of RAM, and 4 I/0 ports of 8 bits each. It also PB.6 In Left AMIGA key input
has a 16-bit timer and edge detect capability on two of the I/0 lines PB.7 Out CAPS LOCK LED control (high = LED on).
(port Abits 0 and 1). It has a built-in crystal oscillator, rumning
at 3.00 megahertz, which is divided internally to a 1 5 MHz internal clock. PORT C -- 6500/1 address 082 hex
: PC.0 Out Column 0 output (active low)
PC.1 Out Column 1 output
RESET CIRCUITRY PC.2 Out Column 2 output
PC.3 Out Column 3 output
There is a circuit for resetting the processor on power-on. The reset PC.4 Out Column 4 output
pulse lasts about 1 second after power is applied. The circuit also PC.5 Out Colum 5 output
performs a "watchdog" function: once the processor starts scanning the PC.6 Out Column 6 output
key matrix, the watchdog timer is armed and will reset the processor if PC.7 Out Column 7 output
the scanning stops for more than about 50 milliseconds. The column 15 line :
is the trigger for the watchdog timer. PORT D -- 6500/1 address 083 hex
PD.0 Out Column 8 output
PD.1 Cut Column 9 output
KEY MATRIX PD.2 Out Column 10 output
PD.3 Cut Column 11 output
PD.4
PD.5
PD.6
PD.7

at a time and read rows. (*) This keyboard has only 15 columns, numbered 0 to 14. However,
the microprocessor software supports 16 columns, so we can use
The other seven keys are special shift keys as follows: CIRL, left SHIET, it in a future keyboard.

right SHIFT, left ALT, right ALT, left AMIGA, right AMIGA. Each of these
keys has a dedicated input on the microprocessor. The actual port and bit
numbers of all the keys are described below.

S-H

COUNIER PIN (input or output) RowS Row4 Row3 Row2 Rowl Row o
Columm (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

On the watchdog timer board, the counter pin is connected to the

colum 1S output. On the older non-watchdog version, the counter pin 8 8 N H Y - ES
is unconnected. This provides the keyboard processor the ability to (PD.0) | (N.P.) 6
determine which type of board it it is installed in, so the new (3E) (36) (25) (15) (06) (54)
processor can work in old boards (with minor changes to the board). + + + + +- + +
7 5 M J u §; (spare)
.7 .P.
NMI INPUT -7 (l:z:-:)) (37) | (26) | (16) | (07) | (5B)
This is connected to VCC and will therefore never turn on. 6 2 < K I * E6
(PC.6) |(N.P.) . 8
(1E) | (38) | (27) | (27) | (08) | (55)
MATRIX TABLE Fomm———— ——— + + + m—m———— +
5 ENTER > i A (o} ((spare)
The following table shows which keys are readable in port A for each (PC.5) |(N.P.) . 9
column you drive. The key code for each key is also included (in hex). (43) (39) (28) (18) (09) (5C) 1
4 7 ? : P) E7
Row5 Row4 Row3 Row2 Rowl Row?0 (PC.4) |(N.P.) / ; 0
Column (Bit 7) (Bit s) (Bit 5) (Bit 4) {Bit 3) (Bit 2) (3D) | (3A) | (29 | (19) (0A) | (s6)
-- + - + P ettt CELT LSS T
15 (spare) (spare) I (spare) | (spare) (Spare) (Spare) 3 4 (spare)| % { - E8
(PD.7) I (°C.3) |[(N.P.) { -
(0E) (10) l (2€) 1 (47) (48) | (49) (2D) (3B) | (@) | (@) | (8 | (7)) |
14 (spare) | (LEET | CAPS TAB - ESC 2 1 SPACE | (RET) } + F9
(PD.6) SHIET) | LOCK . (PC.2) |(N.P.) | BAR] =
(5) | (39) | (62) | (42) | (00) 1| (a9) (ID) | (40) | (2B) | (1B) | (0Q) | (58) |
13 (spare) A A Q ! (spare) 1 0 BACK DEL RET | F10
(PD.5) 1 (PC.1) |(N.P.) | SPACE \
(5E) [(3) | (20) | (20) [(02) | (SA) (0F) 1 (a1) | (46) | (48 | (D) | (59 |
12 9 X s W Q] F1 0 - CURS CURS CURS CURS HELP
(D.4) | (N.P.) 2 (°C.0) [(N.P.) | DOWN | RIGHT | LEFT | UP
160 16 1@ i [0 |69 | 18 | (@) | (8 | @8 | (0 |68 |
11 6 C D E ¥ F2
(PD.3) |(N.P.) 3
(2F) (33) (22) (12) (03) (51) The following table shows which keys are readable in port B
+ + + + + + + (shift keys).
10 3 \'4 F R $ E3
(?D.2) |(N.P.) 4 , _(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0)
(1) 1 (34) | (23) | (13) | (04) | (52)
+ + + + + + + | LEET | LEFT | LEFT | CIRL | RIGHT | RIGHT | RIGHT |
9 . B G T % F4 |AMIGA|ALT | SHIET | |AMIGA|ALT|SHIE'T|
(?D.1) |(N.P.) 5 | (66) | (64) | (60) | (63) | (67) | (65) | (61) |
(3C) 1 (35) | (24) (14) 1 (05) (53) + + + + ¢ + + +

+ + + + m————— + +

Aliasing distortion
Alt keys
Amiga keys

AmigaDOS

Amplitude
Amplitude modulation

Attach mode

Automatic mode

Barrel shifter

Baud rate
Beam counters

Bit-map

Glossary

A side effect of sound sampling, where two additional fre-
quencies are produced, distorting the sound output.

Two keys on the keyboard to the left and right of the
Amiga keys. '

Two keys on the keyboard to the left and right of the space
bar.

The Amiga operating system.

The voltage or current output expressed as volume from a
sound speaker.

A means of increasing audio effects by using one audio chan-
nel to alter the amplitude of another.

In sprites, a mode in which a sprite uses two DMA channels
for additional colors. In sound production, combining two
audio channels for frequency/amplitude modulation or for
stereo sound.

In sprite display, the normal mode in which the sprite DMA
channel, once it starts up, automatically retrieves and
displays all of the data for a sprite. In audio, the normal

mode in which the system retrieves sound data automati-
cally through DMA.

Blitter circuit that allows movement of images on pixel
boundaries.

Rate of data transmission through a serial port.
Registers that keep track of the position of the video beam.

The complete definition of a display in memory, consisting
of one or more bit-planes and information about how to
organize the rectangular display.

Glossary-1

Bit-plane

Bit-plane animation

Blanking interval

Blitter
Clear
CLI

Clipping

Collision

Color descriptor words

Color indirection

Color palette

Color register

Color table

Command line interface

Composite video

Controller

Coordinates

Glossary-2

A contiguous series of display memory words, treated as if it
were a rectangular shape.

A means of animating the display by moving around blocks
of playfield data with the blitter.

Time period when the video beam is outside the display
area.

DMA channel used for data copying and line drawing.
Giving a bit the value of 0.
See command line interface.

When a portion of a sprite is outside the display window
and thus is not visible.

A means of detecting when sprites, playfields, or playfield
objects attempt to overlap in the same pixel position or
attempt to cross some pre-defined boundary.

Pairs of words that define each line of a sprite.

The method used by Amiga for coloring individual pixels in
which the binary number formed from all the bits that
define a given pixel refers to one of the 32 color registers.

See Color table.

One of 32 hardware registers containing colors that you can
define.

The set of 32 color registers.

The command line interface to system commands and
utilities.

A video signal, transmitted over a single coaxial cable, which
includes both picture and sync information.

Hardware device, such as mouse or light pen, used to move
the pointer or furnish some other input to the system.

A pair of numbers shown in the form (x,y), where x is an
offset from the left side of the display or display window
and y is an offset from the top.

Copper

Coprocessor

Cursor keys
Data fetch

Delay

Depth
Digital-to-analog converter

Direct memory access

Display field

Display mode

Display time

Display window

DMA

Dual-playfield mode

Equal-tempered scale

Exec

Display-synchronized coprocessor that resides on one of the
Amiga custom chips and directs the graphics display.

Processor that adds its instruction set to that of the main
processor.

Keys for moving something on the screen.
The number of words fetched for each line of the display.

In playfield horizontal scrolling, specifies how many pixels
the picture will shift for each display field. Delay controls
the speed of scrolling.

Number of bit-planes in a display.
A device that converts a binary quantity to an analog level.

An arrangement whereby intelligent devices can read or
write memory directly, without having to interrupt the
Processor.

One complete scanning of the video beam from top to bot-
tom of the video display screen.

One of the basic types of display; for example, high or low
resolution, interlaced or non-interlaced, single or dual
playfield.

The amount of time to produce one display field, approxi-
mately 1/60th of a second.

The portion of the bit-map selected for display. Also, the
actual size of the on-screen display.

See direct memory access.

A display mode that allows you to manage two separate
display memories, giving you two separately controllable
displays at the same time.

A musical scale where each note is the 12th root of 2 above
the note below it.

Low-level primitives that support the AmigaDOS operating
system.

Glossary-3

Font

Frequency

Frequency modulation

Genlock .

High resolution
Hold-and-modify
Interlaced mode

Joystick

Light pen
Low resolution

Manual mode

Minterm

Modulo

Glossary-4

A set of letters, numbers, and symbols sharing the same size
and design. Lo

The number of times per second a waveform repeats.

A means of changing sound quality by using one audio
channel to affect the period of the waveform produced by
another channel. Frequency modulation increases or
decreases the pitch of the sound.

An optional feature that allows you to bring in a graphics
display from an external video source.

A horizontal display mode in which 640 pixels are displayed
across a horizontal line in a normal-sized display.

A display mode that gives you extended color selection —up
to 4,096 colors on the screen at one time.

A vertical display mode where 400 lines are displayed from
top to bottom of the video display in a normal-size display.

A controller device that freely rotates and swings from left
to right, pivoting from the bottom of the shaft; used to posi-
tion something on the screen.

A controller device consisting of a stylus and tablet used for
drawing something on the screen.

A horizontal display mode in which 320 pixels are displayed
across a horizontal line in a normal-sized display.

Non-DMA output. In sprite display, a mode in which each
line of a sprite is written in a separate operation. In audio
output, a mode in which audio data words are written one
at a time to the output.

One of eight possible logical combinations of data bits from
three different data sources.

A number defining which data in memory belongs on each
horizontal line of the display. Refers to the number of bytes
in memory between the last word on one horizontal line and
the beginning of the first word on the next line.

Mouse

Multitasking

Non-interlaced mode

NTSC

Overscan

Paddle controller

PAL

Parallel port

Pitch

Pixel

Playfield

Playfield object
Playfield animation

Pointer register

Polarity

Potentiometer

Primitives

A controller device that can be rolled around to move some-
thing on the screen; also has buttons to give other forms of
input.

A system in which many tasks can be operating at the same
time, with no task forced to be aware of any other task.

A display mode in which 200 lines are displayed from top to
bottom of the video display in a normal-sized display.

National Television Standards Committee specification for
composite video.

Area scanned by the video beam but not visible on the video
display screen. ‘

A game controller that uses a potentiometer (variable resis-
tor) to position objects on the screen.

A European television standard similar to (but incompatible
with) NTSC. Stands for “Phase Alternate Line.”

A connector on the back of the Amiga that is used to attach
parallel printers and other parallel add-ons. '

‘The quality of a sound expressed as its highness or lowness.

One of the small elements that makes up the video display.
The smallest addressable element in the video display.

One of the basic elements in Amiga graphics; the back-
ground for all the other display elements.

Subsection of a playfield that is used in playfield animation.
See bit-plane animation.

Register that is comtinuously incremented to point to a
series of memory locations.

True or false state of a bit.

An electrical analog device used to adjust some variable
value.

Amiga graphics, text, and animation library functions.

Glossary-5

Quantization noise

RAM

Raster

Read-only

Resolution

ROM
Sample
Sampling rate

Sampling period

Scrolling

Serial port

Set

Shared memory

Sprite

Strobe address

Task

Glossary-6

Audio noise introduced by round-off errors when vou are
trying to reproduce a signal by approximation.

Random access (volatile) memory.

The area in memory that completely defines a bit-map
display.

Describes a register or memory area that can be read but
not written.

On a video display, the number of pixels that can be
displayed in the horizontal and vertical directions.

See read-only memory.
One of the segments of the time axis of a waveform.
The number of samples played per second.

The value that determines how many clock cycles it takes to
play one data sample.

Moving a playfield smoothly in a vertical or horizontal
direction.

A connector on the back of the Amiga used to attach
modems and other serial add-ons.

Giving a bit the value of 1.

The RAM used in the Amiga for both display memory and
executing programs.

Easily movable graphics object that is produced by one of
the eight sprite DMA channels and is independent of the
playfield display.

An address you put out to the bus in order to cause some
other action to take place; the actual data written or read is
ignored.

Operating system module or application program. Each
task appears to have full control over its own virtual 68000
machine.

Timbre
Trackball

Transparent

UART

Video priority

Video display

Write-only

Tone quality of a sound.

A controller device that you spin with your hand to move
something on the screen; may have buttons for other forms
of input.

A special color register definition that allows a background
color to show through. Used in dual-playfield mode.

The circuit that controls the serial link to peripheral devices,
short for Universal Asynchronous Receiver/Transmitter.

Defines which objects (playfields and sprites) are shown in
the foreground and which objects are shown in the back-

ground. Higher-priority objects appear in front of lower-
priority objects.

Everything that appears on the screen of a video monitor or
television.

Describes a register that can be written to but cannot be
read.

Glossary-7

Index

68000
bus sharing, 189
instead of Copper, 24
interrupting, 24, 207
normal cycle, 189
synchronizing with the video beam,
205
with special-purpose chips, 4
ADKCON
in audio, 149, 151
in disk control, 233-4
Aliasing
audio, 154
Animation, 172
Area fill, 180-3

noise reduction, 154

non-DMA output, 157

output jacks, 245

period, 140-43

period register, 143

playing multiple tones, 149
producing a steady tone, 145-6
RF, 245

sampling period, 141

sampling rate, 141, 152, 156, 161
state machine, 161-4

stopping, 144

system overhead, 153

volume, 139-40, 160

volume registers, 139

Attachment waveform transitions, 152
audio, 150 AUDxLCH, 137
sprites, 116 : AUDxLCL, 137
Audio AUDxLEN, 139
aliasing distortion, 154-7 AUDxPER, 143
channels : AUDxVOL, 139
attaching, 149, 161 Background color, 35
choosing, 136 Barrel shifter, 177
data, 137-8 Beam comparator, 121
data length registers, 139 Beam position

data location registers, 137, 138
data output rate, 140-43
decibel values, 140, 160

DMA, 137, 143, 147, 161
equal-tempered scale, 158-9

comparison enable bits, 13
detection of, 205-6

in Copper use, 20
registers, 206

vertical, 12

interrupts, 147, 210 Beam position counter, 205
joining tones, 147-8 Bit-planes

low-pass filter, 155-7
modulation
amplitude, 149
frequency, 149, 150, 161

coloring, 44-6

DMA, 52

in dual-playfield mode, 60
setting the number of, 37

Index-1

setting the pointers, 43 in blitter addressing, 170

Blitter : in line drawing, 183, 185
address scanning, 171 in shift control, 178
addressing, 170 BLTSIZE, 171
animation, 172 BLTxMOD, 169
area filling BLTxPTH, 168
exclusive, 182-3 BLTxPTL, 168
inclusive, 180-2 BPLIMOD, 51
blitter-finished disable bit (BFD), 23 BPL2MOD, 51
blitter-nasty bit, 191 BPLCONO
block transfers, 177 enabling color, 52
common equations, 174 in dual-playfield mode, 64
complete example, 193 in hold-and-modify mode, 80
copying, 167-8 in interlacing, 40
DMA priority, 186 in resolution mode, 38
DMA time slots, 186 selecting bit-planes, 37
equation-to-minterm conversion, 175 setting bits, 37
interrupts, 211 with light pen, 225
LF control byte, 171-7 BPLCONI1
line drawing setting scrolling delay, 78
octants, 184 BPLCON2
registers, 184 in dual-playfield priority, 64 , 200
line drawing mode, 183-5 BPLxPTH, 43, 50, 67
logic equations, 172-5 BPLxPTL, 43, 50, 67
logic operations, 171-7 CLXCON, 203
masking, 178-9 CLXDAT, 203
minterms, 173-6 Collision
modulo, 168-70 control register, 203-4
modulo registers, 169 detection register, 202-3
pointer registers, 168 sprites-playfields, 202-4
sequence of bus cycles, 192 Color
shifting, 177 attached sprites, 118
Venn diagrams, 175-7 background color, 35
with the Copper, 23 color indirection, 31
zero detection, 179 color table, 35
Blitter registers enabling, 52
in line-drawing mode, 183-4 in dual-playfield mode, 62
BLTCONO in hold-and-modify mode, 79
in line drawing, 183 playfields, 31-3, 34-7, 44-5, 62-63, 86-90
in logic operations, 171 sample register contents, 86
in shift control, 178 sprites, 96-8
in zero detection, 179 Color registers
BLTCON1 contents, 36
in area fill, 181, 182 loading, 36

Index-2

names of registers, 35
sprites, 127-9
Color selection
in high-resolution mode,.90
in hold-and-modify mode, 89
in low-resolution mode, 88
COLORx, 35
Comparator, 121
Controller port
joystick, 217
mouse, 217
trackball, 217
Controllers
joystick, 220
light pen, 224-6
mouse, 217-9
potentiometers, 224
proportional
joystick, 220-3
paddle, 220-3
registers, 223
special, 226-7
types, 6
typical connections, 222
COP1LCH, 13
COP1LCL, 13
COP2LCH, 13
COP2LCL, 13
COPCON, 15
COPJMP1, 14
COPJMP2, 14
Copper
affecting registers, 14
bus cycles used, 9
comparison enable, 21
control register, 14
danger bit (CDANG), 15
features, 8
horizontal beam position, 12
in interlaced mode, 22
in memory operations, 9

in vertical blanking interrupts, 210

instruction lists, 15, 17
instructions

description, 9
MOVE, 9
ordering, 16
SKIP, 20-1
summary, 25
WAIT, 11, 19, 21
interrupt, 210
interrupting the 68000, 24
jump strobe addresses, 14
location registers, 13, 19, 21
loops and branches, 21
MOVE instruction, 9
SKIP instruction, 20-1
starting, 14, 19
stopping, 19
vertical beam position, 12
WAIT instruction, 11, 19, 21
with the blitter, 23
Coprocessor
(see Copper), 7
Copying data, 167-8
Data-fetch
high-resolution, 51
in basic playfield, 49-51
in horizontal scrolling, 76
Data-fetch start
normal, 49
Data-fetch stop
normal, 49
DDFSTOP, 49, 72, 76
DDFSTRT, 49, 72, 76
Decibel values, 160
Disk
8520 ports, 228
control, 228-9
control register, 233
controller, 5, 227-235
data buffer, 232
data pointer registers, 230
data transfer, 230
DMA, 230
DMA buffer, 235
drives, 5

input stream synchronization register,

Index-3

235
interrupts, 211, 235
selection, 228-9
sensing, 228-9
write, 230
Display
size of, 46
Display field, 29
Display memory, 46
Display modes, 30
Display output connector, 246
Display window
positioning, 46
size
maximum, 72
normal, 47
starting position
horizontal, 47, 70
vertical, 47, 70
stopping position
horizontal, 48, 71
vertical, 48, 72
DIWSTOP, 48, 71
DIWSTRT, 47, 69
DMA
audio, 143, 161
bit-planes, 52
blitter, 186-92
control, 212-3
control register, 212
disk, 230-3
playfield, 52
sprites, 105, 123
DMACON
BLTPRI bit, 191
in audio, 143
in blitter logic operations, 179
in playfields, 52
stopping the Copper, 20 , 212
DMACONR, 212
DSKBLK, 235
DSKBYTR, 232
DSKDAT, 235
DSKLEN, 230

Index-4

DSKPTH, 230
DSKPTL, 230
DSKSYNC, 235
Dual playfields
bit-plane assignment, 60
description, 58
enabling, 64
high-resolution colors, 63
in high-resolution mode, 63
low-resolution colors, 62
priority, 64
scrolling, 64
Dual-playfield mode, 33
External interrupts, 209
Field time, 29
Genlock
effect on background color, 36
in playfields, 82
High resolution
color selection, 38, 90
memory requirements, 42
with dual playfields, 63
Hold-and-modify mode, 79
Horizontal blanking interval, 12
INTENA, 208
INTENAR, 208
Interlaced mode
Copper in, 22
memory requirements, 42
modulo, 51
setting interlaced mode, 39
Interrupts
audio, 210
blitter, 211
control registers, 208-11
Copper, 210
disk, 211, 235
during vertical blanking, 210
external, 209
interrupt enable bit, 209
interrupt lines, 207
maskable, 207
nonmaskable, 207
serial port, 211

setting and clearing bits, 209
INTREQ), 24, 208
INTREQR, 208
JOYODAT

with joystick, 220

with mouse/trackball, 218
JOY1DAT

with joystick, 220

with mouse/trackball, 218
Joystick

proportional, 221

reading, 220
Keyboard

8520, 236

clock, 236

ghosting, 239

keycodes, 236-7

reading, 236-9
Light pen

controller port, 224-6

registers, 225
Line drawing, 183
Low resolution

color selection, 88
Manual mode

in sprites, 119
Memory

adding, 6

primary and secondary, 5
Memory allocation

audio, 137

formula for playfields, 69

playfields, 42

sprite data, 100
Minterms, 173-6
Modulation

amplitude, 149

frequency, 150
Modulo

blitter, 168-70

in basic playfield, 50

in horizontal scrolling, 76

in interlaced mode, 51
Monitors, 246

Mouse
buttons, 219
counter, 218-9
port, 218
reading, 218-9
Noise
audio, 154
Overscan, 46
Paddle controller, 220
Parallel port, 240
Peripherals, 5, 6
Pixels
definition, 29
in sprites, 95
Playfields
allocating memory, 41
bit-plane pointers, 43
collision, 202-4
color of pixels, 31-3
color register contents, 86
color table, 35

coloring the bit-planes, 34, 44-6
colors in a single playfield, 35
data fetch, 49-51, 72
defining a scrolled playfield, 78
defining display window, 46-8
defining dual playfields, 65
defining the basic playfield, 53-5
display window size

maximum, 72

normal, 47
displaying, 52
dual-playfield mode, 58
enabling DMA, 52
forming, 33
high-resolution

color selection, 90

example, 56

mode, 30
hold-and-modify, 89
hold-and-modify mode, 79-82
interlaced example, 56
low-resolution

colors, 88

Index-5

mode, 30
memory required, 41, 69
modulo registers, 51
multiple-playfield display, 82
normal, 30
pointer registers, 57, 67
priority, 200
register summary, 83-5
scrolling
horizontal, 74-8
vertical, 73-4
selecting bit-planes, 37
setting resolution mode, 38
specifying modulo, 50-2, 66-8
specifying the data fetch, 67
with external video source, 82
with genlock, 82
with larger display memory, 66-8
Playfield-sprite priority, 200
Ports
controller, 216
disk, 228
parallel, 240
serial, 240-5
POTODAT, 223
POT1DAT, 223
POTGO, 222, 226-7
POTGOR, 226-7
Priority
dual playfields, 64
playfield-sprite, 200
priority control register, 200
sprites, 198
Proportional controllers
reading, 222
Resolution
setting, 38
Sampling
period, 141
rate, 152
Scrolling
data fetch, 76
delay, 78
horizontal, 74-8

Index-6

in dual-playfield mode, 64
in high-resolution mode, 75
modulo, 76
vertical, 73-4
SERDATR, 241-3
Serial port
baud rate, 240
output register, 243
receive-data register, 241
shift register, 243
SERPER, 241
Sound generation, 132-5
Sprites
address pointers, 106
arming and disarming, 120
attached
color registers, 129
colors, 118
control word, 116
Copper list, 119
data words, 117, 119
clipped, 95
collision, 109, 202-4
color, 96-8
color registers used, 98
comparator, 121, 123
control registers, 121, 123, 125-6
control words, 102
data registers, 123, 126
data structure, 99-104
data words, 102
designing, 98
displaying
example, 106-8
steps in, 104
DMA, 105, 110
end-of-data words, 104
forming, 92-104
manual mode, 119
memory requirements, 100
moving, 108-10
overlapped, 114
parallel-to-serial converters, 120
pixels in sprites, 95

pointer registers Waveforms
initializing, 105 audio, 132
resetting, 106 , 124 '
position registers, 121, 123
priorities, 198
priority, 111, 114, 200
reuse, 110-13, 111
screen position
horizontal, 92-4, 102
vertical, 94
shape, 95
size, 95
vertical position, 102
SPRxCTL, 102, 120-1, 123, 125
SPRxDATA, 120, 123
SPRxDATSB, 120, 123
SPRxPOS, 102, 120-1, 123, 125
SPRxPTH, 105, 123-4
SPRxPTL, 105, 123-4
Text
packed, 178
Trackball
counter, 218
port, 218
VHPOSR
with beam counter, 206
with light pen, 225
VHPOSW
with beam counter, 206
Video
beam position, 12
camera input, 5
external sources, 82
laser disk input, 5
monitors, 5
output, 245
VCR input, 5
‘Volume, 139-40
VPOSR
in playfields, 57
with beam counter, 206
with light pen, 225
VPOSW
with beam counter, 206

Index-7

> s24.95 FPT USA

Amiga” Technical Reference Series

' Amiga Hardware Reference Manual

The Amiga Computer is an exciting new high-performance microcomputer with
superb graphics, sound, and multitasking capabilities. Its technologically advanced
hardware, designed around the Motorola 68000 microprocessor, includes three
sophisticated custom chips that control graphics, audio, and peripherals. The
Amiga’s unique system software is contained in 192K of read-only memory (ROM),
providing programmers with unparalleled power, flexibility, and convenience in
designing and creating programs.

The AMIGA HARDWARE REFERENCE MANUAL, written by the technical staff at
Commodore-Amiga, Inc., is an in-depth and thorough description of the Amiga’s
hardware. It is both an introduction to the design of the machine and a reference to
its architecture. It includes:

« an introductory tutorial on writing assembly language programs to directly con-
trol the Amiga’s graphics and hardware

o descriptions of the Copper (coprocessor), playfields, sprites, and the Blitter, as
well as audio, system control, and interface hardware

« eight appendices giving a concise summary of the entire register set and the uses
of individual bits

« a glossary of key terms

For the serious programmer working in assembly language, C, or Pascal who wants
to take full advantage of the Amiga’s impressive capabilities, the AMIGA HARD-
WARE REFERENCE MANUAL is an essential reference.

Written by the technical staff at Commodore-Amiga, Inc., who designed the Amiga’s
hardware and system software, the AMIGA HARDWARE REFERENCE MANUAL
is the definitive source of information on the internal design and architecture of this
revolutionary microcomputer.

The other books in the Amiga Technical Reference Series are:

Amiga Intuition Reference Manual
Amiga ROM Kernel Reference Manual: Libraries and Devices
Amiga ROM Kernel Reference Manual: Exec

Cover design by Marshall Henrichs
Cover photograph by Jack Haeger

& Addison-Wesley Publishing Company, Inc. ISBN 0-201-11077-k

L

o

